On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Motivated by the occurence in rate functions of time-dependent large-deviation principles, we study a class of non-negative functions L that induce a flow, given by L(pt, pt) = 0. We derive necessary and sufficient conditions for the unique existence of a generalized gradient structure for the induced flow, as well as explicit formulas for the corresponding driving entropy and dissipation functional. In particular, we show how these conditions can be given a probabilistic interpretation when L is associated to the large deviations of a microscopic particle system. Finally, we illustrate the theory for independent Brownian particles with drift, which leads to the entropy-Wasserstein gradient structure, and for independent Markovian particles on a finite state space, which leads to a previously unknown gradient structure.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.