Evaluation of monte carlo tools for high energy atmospheric physics

dc.bibliographicCitation.firstPage3961
dc.bibliographicCitation.issue11
dc.bibliographicCitation.journalTitleGeoscientific Model Development
dc.bibliographicCitation.lastPage3974
dc.bibliographicCitation.volume9
dc.contributor.authorRutjes, Casper
dc.contributor.authorSarria, David
dc.contributor.authorSkeltved, Alexander Broberg
dc.contributor.authorLuque, Alejandro
dc.contributor.authorDiniz, Gabriel
dc.contributor.authorØstgaard, Nikolai
dc.contributor.authorEbert, Ute
dc.date.accessioned2025-02-28T08:42:49Z
dc.date.available2025-02-28T08:42:49Z
dc.date.issued2016
dc.description.abstractThe emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100keV and 40MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/18668
dc.identifier.urihttps://doi.org/10.34657/17687
dc.language.isoeng
dc.publisherKatlenburg-Lindau : Copernicus
dc.relation.doihttps://doi.org/10.5194/gmd-9-3961-2016
dc.relation.essn1991-9603
dc.rights.licenseCC BY 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0
dc.subject.ddc550
dc.subject.otheratmospheric electricityeng
dc.subject.otheratmospheric modelingeng
dc.subject.otherelectrodynamicseng
dc.subject.otherelectromagnetic fieldeng
dc.subject.otherelectroneng
dc.subject.othergamma ray radiationeng
dc.subject.othergamma ray spectrometryeng
dc.subject.otherkinetic energyeng
dc.subject.otherMonte Carlo analysiseng
dc.subject.otherphysicseng
dc.subject.otherthunderstormeng
dc.titleEvaluation of monte carlo tools for high energy atmospheric physicseng
dc.typeArticle
dc.typeText
tib.accessRightsopenAccess
wgl.contributorINP
wgl.subjectGeowissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gmd-9-3961-2016.pdf
Size:
3.08 MB
Format:
Adobe Portable Document Format
Description: