Wide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Technique

dc.bibliographicCitation.firstPage6723eng
dc.bibliographicCitation.issue23eng
dc.bibliographicCitation.volume20eng
dc.contributor.authorKorinth, Florian
dc.contributor.authorSchmälzlin, Elmar
dc.contributor.authorStiebing, Clara
dc.contributor.authorUrrutia, Tanya
dc.contributor.authorMicheva, Genoveva
dc.contributor.authorSandin, Christer
dc.contributor.authorMüller, André
dc.contributor.authorMaiwald, Martin
dc.contributor.authorSumpf, Bernd
dc.contributor.authorKrafft, Christoph
dc.contributor.authorTränkle, Günther
dc.contributor.authorRoth, Martin M
dc.contributor.authorPopp, Jürgen
dc.date.accessioned2022-08-18T08:54:47Z
dc.date.available2022-08-18T08:54:47Z
dc.date.issued2020
dc.description.abstractWide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10082
dc.identifier.urihttp://dx.doi.org/10.34657/9120
dc.language.isoengeng
dc.publisherBasel : MDPIeng
dc.relation.doihttps://doi.org/10.3390/s20236723
dc.relation.essn1424-8220
dc.relation.ispartofseriesSensors 20 (2020), Nr. 23eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectAutofluorescenceeng
dc.subjectBackground suppressioneng
dc.subjectDiode laserseng
dc.subjectIntegral field spectroscopyeng
dc.subjectNod and shuffleeng
dc.subjectPhotobleachingeng
dc.subjectRaman spectroscopyeng
dc.subjectSERDSeng
dc.subjectWide field imagingeng
dc.subject.ddc620eng
dc.titleWide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Techniqueeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleSensorseng
tib.accessRightsopenAccesseng
wgl.contributorAIPeng
wgl.contributorFBHeng
wgl.contributorIPHTeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wide_field_spectral.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
Description: