Nonadditive disorder problems for some diffusion processes

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1181
dc.contributor.authorGapeev, Pavel
dc.date.accessioned2016-03-24T17:38:29Z
dc.date.available2019-06-28T08:04:08Z
dc.date.issued2006
dc.description.abstractWe study nonadditive Bayesian problems of detecting a change in drift of an observed diffusion process where the cost function of the detection delay has the same structure as in [27] and construct a finite-dimensional Markovian sufficient statistic for that case. We show that when the cost function is linear the optimal stopping time is found as the first time when the a posteriori probability process hits a stochastic boundary depending on the observation process. It is shown that under some nontrivial relationships on the coefficients of the observed diffusion the problem admits a closed form solution. The method of proof is based on embedding the initial problem into a two-dimensional optimal stopping problem and solving the equivalent free-boundary problem by means of the smooth-fit conditions.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/2753
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2150
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleNonadditive disorder problems for some diffusion processeseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
528694030.pdf
Size:
306.58 KB
Format:
Adobe Portable Document Format
Description: