The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaces

dc.bibliographicCitation.firstPage2001243eng
dc.bibliographicCitation.issue2eng
dc.bibliographicCitation.journalTitleAdvanced optical materialseng
dc.bibliographicCitation.lastPage97eng
dc.bibliographicCitation.volume9eng
dc.contributor.authorMichel, Ann-Katrin U.
dc.contributor.authorMeyer, Sebastian
dc.contributor.authorEssing, Nicolas
dc.contributor.authorLassaline, Nolan
dc.contributor.authorLightner, Carin R.
dc.contributor.authorBisig, Samuel
dc.contributor.authorNorris, David J.
dc.contributor.authorChigrin, Dmitry N.
dc.date.accessioned2021-07-30T05:28:10Z
dc.date.available2021-07-30T05:28:10Z
dc.date.issued2020
dc.description.abstractMetasurfaces allow for the spatiotemporal variation of amplitude, phase, and polarization of optical wavefronts. Implementation of active tunability of metasurfaces promises compact flat optics capable of reconfigurable wavefront shaping. Phase-change materials (PCMs) are a prominent material class enabling reconfigurable metasurfaces due to their large refractive index change upon structural transition. However, commonly employed laser-induced switching of PCMs limits the achievable feature sizes and restricts device miniaturization. Thermal scanning-probe-induced local switching of the PCM germanium telluride is proposed to realize near-infrared metasurfaces with feature sizes far below what is achievable with diffraction-limited optical switching. The design is based on a planar multilayer and does not require fabrication of protruding resonators as commonly applied in the literature. Instead, it is numerically demonstrated that a broad-band tuning of perfect absorption can be realized by the localized tip-induced crystallization of the PCM. The spectral response of the metasurface is explained using resonance mode analysis and numerical simulations. To facilitate experimental realization, a theoretical description of the tip-induced crystallization employing multiphysics simulations is provided to demonstrate the great potential for fabricating compact reconfigurable metasurfaces. The concept can be applied not only for plasmonic sensing and spatial frequency filtering, but also be transferred to all-dielectric metasurfaces. © 2020 Wiley-VCH GmbHeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6428
dc.identifier.urihttps://doi.org/10.34657/5475
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/adom.202001243
dc.relation.essn2195-1071
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.ddc620eng
dc.subject.ddc670eng
dc.subject.otheractive metamaterialseng
dc.subject.othernano-opticseng
dc.subject.otherperfect absorbereng
dc.subject.otherphase-change materialseng
dc.subject.otherplasmonicseng
dc.subject.otherscanning-probe lithographyeng
dc.titleThe Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaceseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorDWIeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The Potential of Combining Thermal Scanning Probes....pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format
Description: