Spin Nernst effect in a p-band semimetal InBi

dc.bibliographicCitation.firstPage93003eng
dc.bibliographicCitation.journalTitleNew Journal of Physicseng
dc.bibliographicCitation.lastPage70eng
dc.bibliographicCitation.volume22eng
dc.contributor.authorZhang, Yang
dc.contributor.authorXu, Qiunan
dc.contributor.authorKoepernik, Klaus
dc.contributor.authorFu, Chenguang
dc.contributor.authorGooth, Johannes
dc.contributor.authorvan den Brink, Jeroen
dc.contributor.authorFelser, Claudia
dc.contributor.authorSun, Yan
dc.date.accessioned2020-09-28T11:05:56Z
dc.date.available2020-09-28T11:05:56Z
dc.date.issued2020
dc.description.abstractSince spin currents can be generated, detected, and manipulated via the spin Hall effect (SHE), the design of strong SHE materials has become a focus in the field of spintronics. Because of the recent experimental progress also the spin Nernst effect (SNE), the thermoelectrical counterpart of the SHE, has attracted much interest. Empirically strong SHEs and SNEs are associated with d-band compounds, such as transition metals and their alloys—the largest spin Hall conductivity (SHC) in a p-band material is $\sim 450\left(\hslash /e\right){\left({\Omega}\enspace \mathrm{c}\mathrm{m}\right)}^{-1}$ for a Bi–Sb alloy, which is only about a fifth of platinum. This raises the question whether either the SHE and SNE are naturally suppressed in p-bands compounds, or favourable p-band systems were just not identified yet. Here we consider the p-band semimetal InBi, and predict it has a record SHC ${\sigma }_{xy}^{z}\approx 1100\enspace \left(\hslash /e\right){\left({\Omega}\enspace \mathrm{c}\mathrm{m}\right)}^{-1}$ which is due to the presence of nodal lines in its band structure. Also the spin-Nernst conductivity ${\alpha }_{zx}^{y}\approx 1.2\enspace \left(\hslash /e\right)\left(A/m\cdot K\right)$ is very large, but our analysis shows its origin is different as the maximum appears in a different tensor element compared to that in SHC. This insight gained on InBi provides guiding principles to obtain a strong SHE and SNE in p-band materials and establishes a more comprehensive understanding of the relationship between the SHE and SNE.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4373
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5744
dc.language.isoengeng
dc.publisherBristol : IOP Publishingeng
dc.relation.doihttps://doi.org/10.1088/1367-2630/abaa87
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherspin Nernst effecteng
dc.subject.othernodal lineeng
dc.subject.othersemimetaleng
dc.titleSpin Nernst effect in a p-band semimetal InBieng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhang2020.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format
Description:
Collections