The effect of the three-dimensional strain variation on the emission properties of light-emitting diodes based on (In,Ga)N/GaN nanowires

dc.bibliographicCitation.journalTitlePhyical Review Beng
dc.contributor.authorMusolino, M.
dc.contributor.authorTahraoui, A.
dc.contributor.authorGeelhaar, L.
dc.contributor.authorSacconi, F.
dc.contributor.authorPanetta, F.
dc.contributor.authorDe Santi, C.
dc.contributor.authorMeneghini, M.
dc.contributor.authorZanoni, E.
dc.date.accessioned2018-01-24T15:02:53Z
dc.date.available2019-06-28T12:39:22Z
dc.date.issued2017
dc.description.abstractIn the experimental electroluminescence (EL) spectra of light-emitting diodes (LEDs) based on N-polar (In,Ga)N/GaN nanowires (NWs), we observed a double peak structure. The relative intensity of the two peaks evolves in a peculiar way with injected current. Spatially and spectrally resolved EL maps confirmed the presence of two main transitions in the spectra, and suggested that they are emitted by the majority of single nano-LEDs. In order to elucidate the physical origin of this effect, we performed theoretical calculations of the strain, electric field, and charge density distributions both for planar LEDs and NW-LEDs. On this basis, we simulated also the EL spectra of these devices, which exhibit a double peak structure for N-polar heterostructures, both in the NW and the planar case. In contrast, this feature is not observed when Ga-polar planar LEDs are simulated. We found that the physical origin of the double peak structure is a stronger quantum-confined Stark effect occurring in the first and last quantum well of the N-polar heterostructures. The peculiar evolution of the relative peak intensities with injected current, seen only in the case of the NW-LED, is attributed to the three-dimensional strain variation resulting from elastic relaxation at the free sidewalls of the NWs. Therefore, this study provides important insights on the working principle of N-polar LEDs based on both planar and NW heterostructures.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4250
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttps://arxiv.org/abs/1704.01569
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc530eng
dc.subject.otherElectroluminescenceeng
dc.subject.otherLEDseng
dc.subject.otherOptoelectronicseng
dc.subject.otherStraineng
dc.subject.otherPhysical Systemseng
dc.subject.otherIII-V semiconductorseng
dc.subject.otherNanowireseng
dc.subject.otherQuantum wellseng
dc.subject.otherTechniqueseng
dc.subject.otherMultiscale modelingeng
dc.subject.otherCondensed Matter - Mesoscale and Nanoscale Physicseng
dc.subject.otherCondensed Matter - Materials Scienceeng
dc.titleThe effect of the three-dimensional strain variation on the emission properties of light-emitting diodes based on (In,Ga)N/GaN nanowireseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPDIeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Collections