Array programming with NumPy

dc.bibliographicCitation.firstPage357
dc.bibliographicCitation.issue7825
dc.bibliographicCitation.journalTitleNature
dc.bibliographicCitation.lastPage362
dc.bibliographicCitation.volume585
dc.contributor.authorHarris, Charles R.
dc.contributor.authorMillman, K. Jarrod
dc.contributor.authorvan der Walt, Stéfan J.
dc.contributor.authorGommers, Ralf
dc.contributor.authorVirtanen, Pauli
dc.contributor.authorCournapeau, David
dc.contributor.authorWieser, Eric
dc.contributor.authorTaylor, Julian
dc.contributor.authorBerg, Sebastian
dc.contributor.authorSmith, Nathaniel J.
dc.contributor.authorKern, Robert
dc.contributor.authorPicus, Matti
dc.contributor.authorHoyer, Stephan
dc.contributor.authorvan Kerkwijk, Marten H.
dc.contributor.authorBrett, Matthew
dc.contributor.authorHaldane, Allan
dc.contributor.authordel Río, Jaime Fernández
dc.contributor.authorWiebe, Mark
dc.contributor.authorPeterson, Pearu
dc.contributor.authorGérard-Marchant, Pierre
dc.contributor.authorSheppard, Kevin
dc.contributor.authorReddy, Tyler
dc.contributor.authorWeckesser, Warren
dc.contributor.authorAbbasi, Hameer
dc.contributor.authorGohlke, Christoph
dc.contributor.authorOliphant, Travis E.
dc.date.accessioned2025-02-26T13:59:04Z
dc.date.available2025-02-26T13:59:04Z
dc.date.issued2020
dc.description.abstractArray programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves1 and in the first imaging of a black hole2. Here we review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation upon which the scientific Python ecosystem is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Owing to its central position in the ecosystem, NumPy increasingly acts as an interoperability layer between such array computation libraries and, together with its application programming interface (API), provides a flexible framework to support the next decade of scientific and industrial analysis.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/18612
dc.identifier.urihttps://doi.org/10.34657/17631
dc.language.isoeng
dc.publisherLondon [u.a.] : Nature Publ. Group
dc.relation.doihttps://doi.org/10.1038/s41586-020-2649-2
dc.relation.essn1476-4687
dc.relation.issn0028-0836
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc700
dc.subject.otherComputational Biologyeng
dc.subject.otherMathematicseng
dc.subject.otherProgramming Languageseng
dc.subject.otherSoftware Designeng
dc.subject.otherarrayeng
dc.subject.otherlanguageeng
dc.subject.otherlinear programingeng
dc.subject.othersoftwareeng
dc.subject.otherastronomyeng
dc.subject.otherblack holeeng
dc.subject.otherecosystemeng
dc.subject.otherhumaneng
dc.subject.otherhuman experimenteng
dc.subject.otherlibraryeng
dc.subject.otherrevieweng
dc.subject.othersoftwareeng
dc.subject.otherbiologyeng
dc.subject.othercomputer languageeng
dc.subject.othermathematicseng
dc.subject.otherprocedureseng
dc.subject.othersoftware designeng
dc.titleArray programming with NumPyeng
dc.typeArticle
dc.typeText
tib.accessRightsopenAccess
wgl.contributorINP
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41586-020-2649-2.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Description:
Collections