Bioactive glass–ceramics containing fluorapatite, xonotlite, cuspidine and wollastonite form apatite faster than their corresponding glasses

dc.bibliographicCitation.articleNumber3997
dc.bibliographicCitation.firstPage3997
dc.bibliographicCitation.issue1
dc.bibliographicCitation.journalTitleScientific Reportseng
dc.bibliographicCitation.volume14
dc.contributor.authorKirste, Gloria
dc.contributor.authorContreras Jaimes, Altair
dc.contributor.authorde Pablos-Martín, Araceli
dc.contributor.authorde Souza e Silva, Juliana Martins
dc.contributor.authorMassera, Jonathan
dc.contributor.authorHill, Robert G.
dc.contributor.authorBrauer, Delia S.
dc.date.accessioned2024-05-07T11:16:41Z
dc.date.available2024-05-07T11:16:41Z
dc.date.issued2024
dc.description.abstractCrystallisation of bioactive glasses has been claimed to negatively affect the ion release from bioactive glasses. Here, we compare ion release and mineralisation in Tris–HCl buffer solution for a series of glass–ceramics and their parent glasses in the system SiO2–CaO–P2O5–CaF2. Time-resolved X-ray diffraction analysis of glass–ceramic degradation, including quantification of crystal fractions by full pattern refinement, show that the glass–ceramics precipitated apatite faster than the corresponding glasses, in agreement with faster ion release from the glass–ceramics. Imaging by transmission electron microscopy and X-ray nano-computed tomography suggest that this accelerated degradation may be caused by the presence of nano-sized channels along the internal crystal/glassy matrix interfaces. In addition, the presence of crystalline fluorapatite in the glass–ceramics facilitated apatite nucleation and crystallisation during immersion. These results suggest that the popular view of bioactive glass crystallisation being a disadvantage for degradation, apatite formation and, subsequently, bioactivity may depend on the actual system study and, thus, has to be reconsidered.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/14567
dc.identifier.urihttps://doi.org/10.34657/13598
dc.language.isoeng
dc.publisher[London] : Macmillan Publishers Limited
dc.relation.doihttps://doi.org/10.1038/s41598-024-54228-0
dc.relation.essn2045-2322
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc500
dc.subject.ddc600
dc.subject.otherapatiteeng
dc.subject.otherbuffereng
dc.subject.othercalcium silicateeng
dc.subject.otherfluorapatiteeng
dc.subject.otherglasseng
dc.subject.othersilicon dioxideeng
dc.subject.otherarticleeng
dc.subject.otherbiological activityeng
dc.subject.otherceramicseng
dc.subject.othercomputer assisted tomographyeng
dc.subject.othercontrolled studyeng
dc.subject.otherdegradationeng
dc.subject.otherdrug analysiseng
dc.subject.otherimmersioneng
dc.subject.othernonhumaneng
dc.subject.otherpharmaceuticseng
dc.subject.othertransmission electron microscopyeng
dc.subject.otherX ray analysiseng
dc.subject.otherX ray diffractioneng
dc.titleBioactive glass–ceramics containing fluorapatite, xonotlite, cuspidine and wollastonite form apatite faster than their corresponding glasseseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIFWD
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-024-54228-0.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format
Description:
Collections