Highly Cooperative Photoswitching in Dihydropyrene Dimers

Loading...
Thumbnail Image
Date
2020
Volume
59
Issue
43
Journal
Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker : International edition
Series Titel
Book Title
Publisher
Weinheim : Wiley-VCH
Link to publishers version
Abstract

We present a strategy to achieve highly cooperative photoswitching, where the initial switching event greatly facilitates subsequent switching of the neighboring unit. By linking donor/acceptor substituted dihydropyrenes via suitable π-conjugated bridges, the quantum yield of the second photochemical ring-opening process could be enhanced by more than two orders of magnitude as compared to the first ring-opening. As a result, the intermediate mixed switching state is not detected during photoisomerization although it is formed during the thermal back reaction. Comparing the switching behavior of various dimers, both experimentally and computationally, helped to unravel the crucial role of the bridging moiety connecting both photochromic units. The presented dihydropyrene dimer serves as model system for longer cooperative switching chains, which, in principle, should enable efficient and directional transfer of information along a molecularly defined path. Moreover, our concept allows to enhance the photosensitivity in oligomeric and polymeric systems and materials thereof. © 2020 The Authors. Published by Wiley-VCH GmbH

Description
Keywords
Collections
License
CC BY 4.0 Unported