Streamer propagation along a profiled dielectric surface
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We investigate the propagation of positive streamers along a profiled dielectric surface in air at atmospheric pressure. Results from experiments and two-dimensional planar low-temperature plasma fluid simulations are presented and analysed. The test object consists of a disk-shaped high voltage electrode and a dielectric slab with 0.5 mm deep corrugations. The corrugated surface has a 47% larger surface area than the smooth reference surface. The experiments and simulations are performed at voltage levels that lead to either gap-bridging or arrested streamers. In both experiments and simulations, the streamers take a longer time to reach the ground electrode when propagating along the profiled surface than along the smooth reference surface. Also, arrested streamers stop closer to the high voltage electrode when a profiled surface is used. Streamers propagate closely along the surface profile in the simulations, which suggests that the observed surface profile effect is mainly a result of elongated streamer channels. Compared to the streamers propagating along the smooth surface, the elongated streamers on the profiled surface have less residual voltage at the streamer front to drive the streamer advancement.