Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1660
dc.contributor.authorBradji, Abdallah
dc.contributor.authorFuhrmann, Jürgen
dc.date.accessioned2016-03-24T17:38:42Z
dc.date.available2019-06-28T08:06:45Z
dc.date.issued2011
dc.description.abstractA general class of nonconforming meshes has been recently studied for stationary anisotropic heterogeneous diffusion problems by R. Eymard and coworkers. Thanks to these basic ideas developed for stationary problems, we derive a new discretization scheme in order to approximate the nonstationary heat problem. The unknowns of this scheme are the values at the centre of the control volumes, at some internal interfaces, and at the mesh points of the time discretization. Although the numerical scheme stems from the finite volume method, its formulation is based on the discrete version for the weak formulation defined for the heat problem. We derive error estimates for the solution in discrete norm, and an error estimate for an approximation of the gradient, in a general framework in which the discrete bilinear form is satisfying ellipticity. We prove in particular, that, when the discrete flux is calculated using a stabilized discrete gradient, the convergence order is h+k , where h (resp. k) is the mesh size of the spatial (resp. time) discretization. This estimate is valid under the regularity assumption that the exact solution is twice continuously differentiable in time and space. These error estimates are useful because they allow us to get error estimates for the approximations of the exact solution and its first derivativeseng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/3209
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2438
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherNon–conforming grideng
dc.subject.othernonstationary heat equationeng
dc.subject.otherSUSHI schemeeng
dc.subject.otherimplicit schemeeng
dc.subject.otherdiscrete gradienteng
dc.titleSome abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial mesheseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
688543464.pdf
Size:
509.94 KB
Format:
Adobe Portable Document Format
Description: