Nanoscopic interactions of colloidal particles can suppress millimetre drop splashing

dc.bibliographicCitation.firstPage5116eng
dc.bibliographicCitation.issue20eng
dc.bibliographicCitation.journalTitleSoft mattereng
dc.bibliographicCitation.lastPage5121eng
dc.bibliographicCitation.volume17eng
dc.contributor.authorThoraval, Marie-Jean
dc.contributor.authorSchubert, Jonas
dc.contributor.authorKarpitschka, Stefan
dc.contributor.authorChanana, Munish
dc.contributor.authorBoyer, François
dc.contributor.authorSandoval-Naval, Enrique
dc.contributor.authorDijksman, J. Frits
dc.contributor.authorSnoeijer, Jacco H.
dc.contributor.authorLohse, Detlef
dc.date.accessioned2022-04-20T05:41:23Z
dc.date.available2022-04-20T05:41:23Z
dc.date.issued2021
dc.description.abstractThe splashing of liquid drops onto a solid surface is important for a wide range of applications, including combustion and spray coating. As the drop hits the solid surface, the liquid is ejected into a thin horizontal sheet expanding radially over the substrate. Above a critical impact velocity, the liquid sheet is forced to separate from the solid surface by the ambient air, and breaks up into smaller droplets. Despite many applications involving complex fluids, their effects on splashing remain mostly unexplored. Here we show that the splashing of a nanoparticle dispersion can be suppressed at higher impact velocities by the interactions of the nanoparticles with the solid surface. Although the dispersion drop first shows the classical transition from deposition to splashing when increasing the impact velocity, no splashing is observed above a second higher critical impact velocity. This result goes against the commonly accepted understanding of splashing, that a higher impact velocity should lead to even more pronounced splashing. Our findings open new possibilities to deposit large amount of complex liquids at high speeds.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8729
dc.identifier.urihttps://doi.org/10.34657/7767
dc.language.isoengeng
dc.publisherLondon : Royal Soc. of Chemistryeng
dc.relation.doihttps://doi.org/10.1039/d0sm01367f
dc.relation.essn1744-6848
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subject.ddc530eng
dc.subject.otherDropseng
dc.subject.otherLiquidseng
dc.subject.otherNanoparticleseng
dc.subject.otherSolseng
dc.subject.otherVelocityeng
dc.subject.otherClassical transitioneng
dc.subject.otherColloidal particleeng
dc.subject.otherComplex fluidseng
dc.subject.otherComplex liquideng
dc.subject.otherCritical impact velocityeng
dc.subject.otherDrop splashingeng
dc.subject.otherImpact velocitieseng
dc.subject.otherNano-particle dispersionseng
dc.subject.otherAireng
dc.titleNanoscopic interactions of colloidal particles can suppress millimetre drop splashingeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nanoscopic_interactions_of_colloidal_particles.pdf
Size:
2.85 MB
Format:
Adobe Portable Document Format
Description:
Collections