Giant persistent photoconductivity in monolayer MoS2 field-effect transistors

dc.bibliographicCitation.firstPage15eng
dc.bibliographicCitation.journalTitlenpj 2D materials and applicationseng
dc.bibliographicCitation.volume5eng
dc.contributor.authorGeorge, A.
dc.contributor.authorFistul, M.V.
dc.contributor.authorGruenewald, M.
dc.contributor.authorKaiser, D.
dc.contributor.authorLehnert, T.
dc.contributor.authorMupparapu, R.
dc.contributor.authorNeumann, C.
dc.contributor.authorHübner, U.
dc.contributor.authorSchaal, M.
dc.contributor.authorMasurkar, N.
dc.contributor.authorArava, L.M.R.
dc.contributor.authorStaude, I.
dc.contributor.authorKaiser, U.
dc.contributor.authorFritz, T.
dc.contributor.authorTurchanin, A.
dc.date.accessioned2022-03-31T08:30:06Z
dc.date.available2022-03-31T08:30:06Z
dc.date.issued2021
dc.description.abstractMonolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (λ = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large number of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis for the defect-based engineering of the electronic and optical properties of TMDs for device applications.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8480
dc.identifier.urihttps://doi.org/10.34657/7518
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/s41699-020-00182-0
dc.relation.essn2397-7132
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc660eng
dc.subject.ddc670eng
dc.subject.otherDefectseng
dc.subject.otherHigh resolution transmission electron microscopyeng
dc.subject.otherImage enhancementeng
dc.subject.otherLayered semiconductorseng
dc.subject.otherMolybdenum compoundseng
dc.subject.otherMonolayerseng
dc.subject.otherOptical propertieseng
dc.subject.otherPhotoconductivityeng
dc.subject.otherScanning electron microscopyeng
dc.subject.otherScanning tunneling microscopyeng
dc.subject.otherTransition metalseng
dc.subject.otherElectric transporteng
dc.subject.otherElectronic and optical propertieseng
dc.subject.otherEnhanced conductivityeng
dc.subject.otherPersistent Photoconductivityeng
dc.subject.otherPhotoluminescence measurementseng
dc.subject.otherScanning tunneling spectroscopyeng
dc.subject.otherTransition metal dichalcogenides (TMD)eng
dc.subject.otherUltrathin electronicseng
dc.subject.otherField effect transistorseng
dc.titleGiant persistent photoconductivity in monolayer MoS2 field-effect transistorseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPHTeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Giant_persistent_photoconductivity_in_monolayer.pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format
Description:
Collections