Cell-Derived Vesicles for Antibiotic Delivery—Understanding the Challenges of a Biogenic Carrier System

dc.bibliographicCitation.articleNumber2207479
dc.bibliographicCitation.firstPage2207479
dc.bibliographicCitation.issue25
dc.bibliographicCitation.journalTitleSmalleng
dc.bibliographicCitation.volume19
dc.contributor.authorHeinrich, Eilien
dc.contributor.authorHartwig, Olga
dc.contributor.authorWalt, Christine
dc.contributor.authorKardani, Arefeh
dc.contributor.authorKoch, Marcus
dc.contributor.authorJahromi, Leila Pourtalebi
dc.contributor.authorHoppstädter, Jessica
dc.contributor.authorKiemer, Alexandra K.
dc.contributor.authorLoretz, Brigitta
dc.contributor.authorLehr, Claus‐Michael
dc.contributor.authorFuhrmann, Gregor
dc.date.accessioned2024-05-28T10:22:21Z
dc.date.available2024-05-28T10:22:21Z
dc.date.issued2023
dc.description.abstractRecently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs’ technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex models and elementary in vitro–in vivo correlation, and comparison of mammalian versus bacterial vesicles. With this in mind, two new types of EVs derived from human B-lymphoid cells with low immunogenicity and from non-pathogenic myxobacteria SBSr073 are introduced here. A large-scale isolation protocol to reduce plastic waste and cultivation space toward sustainable EV research is established. The biocompatibility of mammalian and bacterial EVs is comprehensively evaluated using cytokine release and endotoxin assays in vitro, and an in vivo zebrafish larvae model is applied. A complex three-dimensional human cell culture model is used to understand the spatial distribution of vesicles in epithelial and immune cells and again used zebrafish larvae to study the biodistribution in vivo. Finally, vesicles are successfully loaded with the fluoroquinolone ciprofloxacin (CPX) and showed lower toxicity in zebrafish larvae than free CPX. The loaded vesicles are then tested effectively on enteropathogenic Shigella, whose infections are currently showing increasing resistance against available antibiotics.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/14637
dc.identifier.urihttps://doi.org/10.34657/13659
dc.language.isoeng
dc.publisherWeinheim : Wiley-VCH
dc.relation.doihttps://doi.org/10.1002/smll.202207479
dc.relation.essn1613-6829
dc.relation.issn1613-6810
dc.rights.licenseCC BY-NC-ND 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject.ddc620
dc.subject.otherB-lymphoid RO cellseng
dc.subject.otherciprofloxacineng
dc.subject.otherextracellular vesicleseng
dc.subject.othermyxobacteriaeng
dc.subject.otherouter membrane vesicleseng
dc.subject.otherShigella flexnerieng
dc.subject.otherzebrafish larvaeeng
dc.titleCell-Derived Vesicles for Antibiotic Delivery—Understanding the Challenges of a Biogenic Carrier Systemeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorINM
wgl.subjectIngenieurwissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cell‐Derived-Vesicles-for-Antibiotic.pdf
Size:
3.62 MB
Format:
Adobe Portable Document Format
Description: