4D Printing of a Light-Driven Soft Actuator with Programmed Printing Density

dc.bibliographicCitation.firstPage12176eng
dc.bibliographicCitation.issue10eng
dc.bibliographicCitation.lastPage12185eng
dc.bibliographicCitation.volume12eng
dc.contributor.authorNishiguchi, Akihiro
dc.contributor.authorZhang, Hang
dc.contributor.authorSchweizerhof, Sjören
dc.contributor.authorSchulte, Marie Friederike
dc.contributor.authorMourran, Ahmed
dc.contributor.authorMöller, Martin
dc.date.accessioned2021-11-18T13:42:03Z
dc.date.available2021-11-18T13:42:03Z
dc.date.issued2020
dc.description.abstractThere is a growing interest in the concept of four-dimensional (4D) printing that combines a three-dimensional (3D) manufacturing process with dynamic modulation for bioinspired soft materials exhibiting more complex functionality. However, conventional approaches have drawbacks of low resolution, control of internal micro/nanostructure, and creation of fast, complex actuation due to a lack of high-resolution fabrication technology and suitable photoresist for soft materials. Here, we report an approach of 4D printing that develops a bioinspired soft actuator with a defined 3D geometry and programmed printing density. Multiphoton lithography (MPL) allows for controlling printing density in gels at pixel-by-pixel with a resolution of a few hundreds of nanometers, which tune swelling behaviors of gels in response to external stimuli. We printed a 3D soft actuator composed of thermoresponsive poly(N-isopropylacrylamide) (PNIPAm) and gold nanorods (AuNRs). To improve the resolution of printing, we synthesized a functional, thermoresponsive macrocrosslinker. Through plasmonic heating by AuNRs, nanocomposite-based soft actuators undergo nonequilibrium, programmed, and fast actuation. Light-mediated manufacture and manipulation (MPL and photothermal effect) offer the feasibility of 4D printing toward adaptive bioinspired soft materials. Copyright © 2020 American Chemical Society.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7352
dc.identifier.urihttps://doi.org/10.34657/6399
dc.language.isoengeng
dc.publisherWashington, DC : ACS Publicationseng
dc.relation.doihttps://doi.org/10.1021/acsami.0c02781
dc.relation.essn1944-8252
dc.relation.ispartofseriesACS Applied Materials and Interfaces 12 (2020), Nr. 10eng
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subjectcomposite materialseng
dc.subjectgold nanorodseng
dc.subjecthydrogelseng
dc.subjectmultiphoton lithographyeng
dc.subjectoptically active materialseng
dc.subject.ddc540eng
dc.subject.ddc600eng
dc.title4D Printing of a Light-Driven Soft Actuator with Programmed Printing Densityeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleACS Applied Materials and Interfaceseng
tib.accessRightsopenAccesseng
wgl.contributorDWIeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
acsami.0c02781.pdf
Size:
4.19 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Lizenz ACS NC-ND 4_0.pdf
Size:
304.06 KB
Format:
Adobe Portable Document Format
Description:
Lizenz
Collections