A graphical interface for the Gromov-Witten theory of curves
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We explore the explicit relationship between the descendant Gromov–Witten theory of target curves, operators on Fock spaces, and tropical curve counting. We prove a classical/tropical correspondence theorem for descendant invariants and give an algorithm that establishes a tropical Gromov–Witten/Hurwitz equivalence. Tropical curve counting is related to an algebra of operators on the Fock space by means of bosonification. In this manner, tropical geometry provides a convenient “graphical user interface” for Okounkov and Pandharipande’s celebrated GW/H correspondence. An important goal of this paper is to spell out the connections between these various perspectives for target dimension 1, as a first step in studying the analogous relationship between logarithmic descendant theory, tropical curve counting, and Fock space formalisms in higher dimensions.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.