A graphical interface for the Gromov-Witten theory of curves

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2016-06
dc.contributor.authorCavalieri, Renzo
dc.contributor.authorJohnson, Paul
dc.contributor.authorMarkwig, Hannah
dc.contributor.authorRanganathan, Dhruv
dc.date.available2019-06-28T08:14:37Z
dc.date.issued2016
dc.description.abstractWe explore the explicit relationship between the descendant Gromov–Witten theory of target curves, operators on Fock spaces, and tropical curve counting. We prove a classical/tropical correspondence theorem for descendant invariants and give an algorithm that establishes a tropical Gromov–Witten/Hurwitz equivalence. Tropical curve counting is related to an algebra of operators on the Fock space by means of bosonification. In this manner, tropical geometry provides a convenient “graphical user interface” for Okounkov and Pandharipande’s celebrated GW/H correspondence. An important goal of this paper is to spell out the connections between these various perspectives for target dimension 1, as a first step in studying the analogous relationship between logarithmic descendant theory, tropical curve counting, and Fock space formalisms in higher dimensions.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/1803
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2984
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2016-06
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleA graphical interface for the Gromov-Witten theory of curveseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2016_06.pdf
Size:
838.49 KB
Format:
Adobe Portable Document Format
Description: