Enhancing Multi-Energy Modeling: The Role of Mixed-Integer Optimization Decisions
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
The goal to decarbonize the energy sector has led to increased research in modeling and optimizing multi-energy systems. One of the most promising and popular techniques for modeling and solving multienergy optimization problems is (multi-objective) mixed-integer programming, valued for its ability to represent the complexities of integrated energy systems. While the literature often focuses on deriving mathematical formulations and parameter settings, less attention is given to critical post-formulation decisions. Modeling multi-energy systems as mixed-integer linear optimization programs demands decisions across multiple degrees of freedom. Key steps include reducing a real-world multi-energy network into an abstract topology, defining variables, formulating the relevant (in-)equalities to represent technical requirements, setting (multiple) objectives, and integrating these elements into a mixed-integer program (MIP). However, with these elements fixed, the specific transformation of the abstract topology into a graph structure and the construction of the MIP remain non-uniquely. These choices can significantly impact user-friendliness, problem size, and computational efficiency, thus affecting the feasibility and efficiency of modeling efforts. In this work, we identify and analyze the additional degrees of freedom and describe two distinct approaches to address them. The approaches are compared regarding mathematical equivalence, suitability for solution algorithms, and clarity of the underlying topology. A case study on a realistic subarea of Berlin’s district heating network involving tri-objective optimization for a unit commitment problem demonstrates the practical significance of these decisions. By highlighting these critical yet often overlooked aspects, our work equips energy system modelers with insights to improve computational efficiency, scalability, and interpretability in their optimization efforts, ultimately enhancing the practicality and effectiveness of multi-energy system models. Datei-Upload durch TIB
