Low rank surrogates for polymorphic fields with application to fuzzy-stochastic partial differential equations

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2580
dc.contributor.authorEigel, Martin
dc.contributor.authorGrasedyck, Lars
dc.contributor.authorGruhlke, Robert
dc.contributor.authorMoser, Dieter
dc.date.accessioned2022-06-23T09:38:50Z
dc.date.available2022-06-23T09:38:50Z
dc.date.issued2019
dc.description.abstractWe consider a general form of fuzzy-stochastic PDEs depending on the interaction of probabilistic and non-probabilistic ("possibilistic") influences. Such a combined modelling of aleatoric and epistemic uncertainties for instance can be applied beneficially in an engineering context for real-world applications, where probabilistic modelling and expert knowledge has to be accounted for. We examine existence and well-definedness of polymorphic PDEs in appropriate function spaces. The fuzzy-stochastic dependence is described in a high-dimensional parameter space, thus easily leading to an exponential complexity in practical computations. To aleviate this severe obstacle in practise, a compressed low-rank approximation of the problem formulation and the solution is derived. This is based on the Hierarchical Tucker format which is constructed with solution samples by a non-intrusive tensor reconstruction algorithm. The performance of the proposed model order reduction approach is demonstrated with two examples. One of these is the ubiquitous groundwater flow model with Karhunen-Loeve coefficient field which is generalized by a fuzzy correlation length.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9154
dc.identifier.urihttps://doi.org/10.34657/8192
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2580
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherFuzzy-stochastic partial differential equationseng
dc.subject.otherpossibilityeng
dc.subject.otherpolymorphic uncertainty modelingeng
dc.subject.otheruncertainty quantificationeng
dc.subject.otherlow-rank hierachical tensor formatseng
dc.subject.otherparameteric partial differential equationseng
dc.subject.otherpolymorphic domaineng
dc.titleLow rank surrogates for polymorphic fields with application to fuzzy-stochastic partial differential equationseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent36 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2580.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Description: