Low rank surrogates for polymorphic fields with application to fuzzy-stochastic partial differential equations
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2580 | |
dc.contributor.author | Eigel, Martin | |
dc.contributor.author | Grasedyck, Lars | |
dc.contributor.author | Gruhlke, Robert | |
dc.contributor.author | Moser, Dieter | |
dc.date.accessioned | 2022-06-23T09:38:50Z | |
dc.date.available | 2022-06-23T09:38:50Z | |
dc.date.issued | 2019 | |
dc.description.abstract | We consider a general form of fuzzy-stochastic PDEs depending on the interaction of probabilistic and non-probabilistic ("possibilistic") influences. Such a combined modelling of aleatoric and epistemic uncertainties for instance can be applied beneficially in an engineering context for real-world applications, where probabilistic modelling and expert knowledge has to be accounted for. We examine existence and well-definedness of polymorphic PDEs in appropriate function spaces. The fuzzy-stochastic dependence is described in a high-dimensional parameter space, thus easily leading to an exponential complexity in practical computations. To aleviate this severe obstacle in practise, a compressed low-rank approximation of the problem formulation and the solution is derived. This is based on the Hierarchical Tucker format which is constructed with solution samples by a non-intrusive tensor reconstruction algorithm. The performance of the proposed model order reduction approach is demonstrated with two examples. One of these is the ubiquitous groundwater flow model with Karhunen-Loeve coefficient field which is generalized by a fuzzy correlation length. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9154 | |
dc.identifier.uri | https://doi.org/10.34657/8192 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2580 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Fuzzy-stochastic partial differential equations | eng |
dc.subject.other | possibility | eng |
dc.subject.other | polymorphic uncertainty modeling | eng |
dc.subject.other | uncertainty quantification | eng |
dc.subject.other | low-rank hierachical tensor formats | eng |
dc.subject.other | parameteric partial differential equations | eng |
dc.subject.other | polymorphic domain | eng |
dc.title | Low rank surrogates for polymorphic fields with application to fuzzy-stochastic partial differential equations | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 36 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2580.pdf
- Size:
- 1.22 MB
- Format:
- Adobe Portable Document Format
- Description: