Malware propagation in urban D2D networks

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2674
dc.contributor.authorHinsen, Alexander
dc.contributor.authorJahnel, Benedikt
dc.contributor.authorCali, Eli
dc.contributor.authorWary, Jean-Philippe
dc.date.accessioned2022-06-30T12:42:33Z
dc.date.available2022-06-30T12:42:33Z
dc.date.issued2020
dc.description.abstractWe introduce and analyze models for the propagation of malware in pure D2D networks given via stationary Cox--Gilbert graphs. Here, the devices form a Poisson point process with random intensity measure λ, Λ where Λ is stationary and given, for example, by the edge-length measure of a realization of a Poisson--Voronoi tessellation that represents an urban street system. We assume that, at initial time, a typical device at the center of the network carries a malware and starts to infect neighboring devices after random waiting times. Here we focus on Markovian models, where the waiting times are exponential random variables, and non-Markovian models, where the waiting times feature strictly positive minimal and finite maximal waiting times. We present numerical results for the speed of propagation depending on the system parameters. In a second step, we introduce and analyze a counter measure for the malware propagation given by special devices called white knights, which have the ability, once attacked, to eliminate the malware from infected devices and turn them into white knights. Based on simulations, we isolate parameter regimes in which the malware survives or is eliminated, both in the Markovian and non-Markovian setting.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9324
dc.identifier.urihttps://doi.org/10.34657/8362
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2674
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherRandom environmenteng
dc.subject.otherCox--Gilbert grapheng
dc.subject.otherPoisson--Voronoi tessellationeng
dc.subject.otherinteracting particle systemeng
dc.subject.otherad-hoc networkeng
dc.subject.otherdata propagationeng
dc.subject.otherwhite knighteng
dc.subject.otherspeed of propagationeng
dc.subject.othersurvivaleng
dc.subject.otherextinctioneng
dc.titleMalware propagation in urban D2D networkseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent17 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2674.pdf
Size:
3.07 MB
Format:
Adobe Portable Document Format
Description: