Existence and stability of solutions with periodically moving weak internal layers

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1294
dc.contributor.authorButuzov, V.F.
dc.contributor.authorNefedpv, N.N.
dc.contributor.authorRecke, L.
dc.contributor.authorSchneider, K.R.
dc.date.accessioned2016-03-24T17:38:20Z
dc.date.available2019-06-28T08:02:58Z
dc.date.issued2008
dc.description.abstractWe consider the periodic parabolic differential equation $ep^2 Big( fracpartial^2 upartial x^2 -fracpartial upartial t Big)=f(u,x,t,ep)$ under the assumption that $ve$ is a small positive parameter and that the degenerate equation $f(u,x,t,0) =0$ has two intersecting solutions. We derive conditions such that there exists an asymptotically stable solution $u_p(x,t,ep)$ which is $T$-periodic in $t$, satisfies no-flux boundary conditions and tends to the stable composed root of the degenerate equation as $eprightarrow 0$.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/2325
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/1953
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherSingularly perturbed reaction diffusion equationeng
dc.subject.otherperiodic boundary value problemeng
dc.subject.otherboundary layerseng
dc.titleExistence and stability of solutions with periodically moving weak internal layerseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
558843441.pdf
Size:
165.35 KB
Format:
Adobe Portable Document Format
Description: