This item is non-discoverable
Stacking faults as quantum wells in nanowires: Density of states, oscillator strength and radiative efficiency
dc.bibliographicCitation.journalTitle | Phyical Review B | eng |
dc.contributor.author | Corfdir, P. | |
dc.contributor.author | Hauswald, C. | |
dc.contributor.author | Zettler, J.K. | |
dc.contributor.author | Flissikowski, T. | |
dc.contributor.author | Lähnemann, J. | |
dc.contributor.author | Fernández-Garrido, S. | |
dc.contributor.author | Geelhaar, L. | |
dc.contributor.author | Grahn, H.T. | |
dc.contributor.author | Brandt, O. | |
dc.date.available | 2019-06-28T12:39:24Z | |
dc.date.issued | 2014 | |
dc.description.abstract | We investigate the nature of excitons bound to I1 basal-plane stacking faults [(I1;X)] in GaN nanowire ensembles by continuous-wave and time-resolved photoluminescence spectroscopy. Based on the linear increase of the radiative lifetime of these excitons with temperature, they are demonstrated to exhibit a two-dimensional density of states, i. e., a basal-plane stacking fault acts as a quantum well. From the slope of the linear increase, we determine the oscillator strength of the (I1;X) and show that the value obtained reflects the presence of large internal electrostatic fields across the stacking fault. While the recombination of donor-bound and free excitons in the GaN nanowire ensemble is dominated by nonradiative phenonema already at 10 K, we observe that the (I1;X) recombines purely radiatively up to 60 K. This finding provides important insight into the nonradiative recombination processes in GaN nanowires. First, the radiative lifetime of about 6 ns measured at 60 K sets an upper limit for the surface recombination velocity of 450 cm/s considering the nanowires mean diameter of 105 nm. Second, the density of nonradiative centers responsible for the fast decay of donor-bound and free excitons cannot be higher than 2x10^16 cm^-3. As a consequence, the nonradiative decay of donor-bound excitons in these GaN nanowire ensembles has to occur indirectly via the free exciton state. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/4263 | |
dc.language.iso | eng | eng |
dc.publisher | Cambridge : arXiv | eng |
dc.relation.uri | http://arxiv.org/abs/1408.5263 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 530 | eng |
dc.subject.other | Mesoscale and Nanoscale Physics | eng |
dc.title | Stacking faults as quantum wells in nanowires: Density of states, oscillator strength and radiative efficiency | eng |
dc.type | Article | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | PDI | eng |
wgl.subject | Physik | eng |
wgl.type | Zeitschriftenartikel | eng |