Eigenvalue order statistics for random Schrödinger operators with doubly-exponential tails
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We consider random Schrödinger operators of the form Delta+zeta , where D is the lattice Laplacian on Zd and Delta is an i.i.d. random field, and study the extreme order statistics of the eigenvalues for this operator restricted to large but finite subsets of Zd. We show that for sigma with a doubly-exponential type of upper tail, the upper extreme order statistics of the eigenvalues falls into the Gumbel max-order class. The corresponding eigenfunctions are exponentially localized in regions where zeta takes large, and properly arranged, values. A new and self-contained argument is thus provided for Anderson localization at the spectral edge which permits a rather explicit description of the shape of the potential and the eigenfunctions. Our study serves as an input into the analysis of an associated parabolic Anderson problem.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.