Eigenvalue order statistics for random Schrödinger operators with doubly-exponential tails

Loading...
Thumbnail Image

Date

Volume

1873

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

We consider random Schrödinger operators of the form Delta+zeta , where D is the lattice Laplacian on Zd and Delta is an i.i.d. random field, and study the extreme order statistics of the eigenvalues for this operator restricted to large but finite subsets of Zd. We show that for sigma with a doubly-exponential type of upper tail, the upper extreme order statistics of the eigenvalues falls into the Gumbel max-order class. The corresponding eigenfunctions are exponentially localized in regions where zeta takes large, and properly arranged, values. A new and self-contained argument is thus provided for Anderson localization at the spectral edge which permits a rather explicit description of the shape of the potential and the eigenfunctions. Our study serves as an input into the analysis of an associated parabolic Anderson problem.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.