Geometric Knot Theory

Loading...
Thumbnail Image

Date

Authors

Volume

22

Issue

Journal

Series Titel

Oberwolfach reports : OWR

Book Title

Publisher

Zürich : EMS Publ. House

Link to publishers version

Abstract

Geometric knot theory studies relations between geometric properties of a space curve and the knot type it represents. As examples, knotted curves have quadrisecant lines, and have more distortion and more total curvature than (some) unknotted curves. Geometric energies for space curves – like the Möbius energy, ropelength and various regularizations – can be minimized within a given knot type to give an optimal shape for the knot. Increasing interest in this area over the past decade is partly due to various applications, for instance to random knots and polymers, to topological fluid dynamics and to the molecular biology of DNA. This workshop focused on the mathematics behind these applications, drawing on techniques from algebraic topology, differential geometry, integral geometry, geometric measure theory, calculus of variations, nonlinear optimization and harmonic analysis.

Description

Keywords

License

Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.