Geometric Knot Theory

dc.bibliographicCitation.firstPage1313
dc.bibliographicCitation.lastPage1358
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume22
dc.contributor.otherCantarella, Jason
dc.contributor.otherSullivan, John M.
dc.contributor.othervon der Mosel, Heiko
dc.date.accessioned2023-12-15T09:05:02Z
dc.date.available2023-12-15T09:05:02Z
dc.date.issued2013
dc.description.abstractGeometric knot theory studies relations between geometric properties of a space curve and the knot type it represents. As examples, knotted curves have quadrisecant lines, and have more distortion and more total curvature than (some) unknotted curves. Geometric energies for space curves – like the Möbius energy, ropelength and various regularizations – can be minimized within a given knot type to give an optimal shape for the knot. Increasing interest in this area over the past decade is partly due to various applications, for instance to random knots and polymers, to topological fluid dynamics and to the molecular biology of DNA. This workshop focused on the mathematics behind these applications, drawing on techniques from algebraic topology, differential geometry, integral geometry, geometric measure theory, calculus of variations, nonlinear optimization and harmonic analysis.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13065
dc.identifier.urihttps://doi.org/10.34657/12095
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2013-22
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleGeometric Knot Theoryeng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Geometric Knot Theory, 28 Apr - 04 May 2013, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2013_22.pdf
Size:
604.97 KB
Format:
Adobe Portable Document Format
Description: