Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt

Loading...
Thumbnail Image
Date
2014
Volume
5
Issue
1
Journal
Series Titel
Book Title
Publisher
Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften
Link to publishers version
Abstract

The optical and electrical properties of terbium(III) bis(phthalocyanine) (TbPc2) films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE) and current sensing atomic force microscopy (cs-AFM). Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I–V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFMbased electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution.

Description
Keywords
Current sensing AFM, ellipsometry, spintronics, TbPc2, transport properties
Citation
Robaschik, P., Siles, P. F., Bülz, D., Richter, P., Monecke, M., Fronk, M., et al. (2014). Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt. 5(1). https://doi.org//10.3762/bjnano.5.215
License
CC BY 2.0 Unported