Self-Adaptive Numerical Methods for Computationally Challenging Problems

Loading...
Thumbnail Image
Date
2016
Authors
Volume
42
Issue
Journal
Series Titel
Oberwolfach reports : OWR
Book Title
Publisher
Zürich : EMS Publ. House
Link to publishers version
Abstract

Self-adaptive numerical methods provide a powerful and automatic approach in scientific computing. In particular, Adaptive Mesh Refinement (AMR) algorithms have been widely used in computational science and engineering and have become a necessary tool in computer simulations of complex natural and engineering problems. The key ingredient for success of self-adaptive numerical methods is a posteriori error estimates that are able to accurately locate sources of global and local error in the current approximation. The workshop creates a forum for junior and senior researchers in numerical analysis and computational science and engineering to discuss recent advances, initiates future research projects, and establishes new collaborations on convergence theory of adaptive numerical methods and on the construction and analysis of efficient, reliable, and robust a posteriori error estimators for computationally challenging problems.

Description
Keywords
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.