Self-Adaptive Numerical Methods for Computationally Challenging Problems

dc.bibliographicCitation.firstPage2399
dc.bibliographicCitation.lastPage2464
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume42
dc.contributor.otherCai, Zhiqiang
dc.contributor.otherVerfürth, Rüdiger
dc.date.accessioned2023-12-15T09:35:12Z
dc.date.available2023-12-15T09:35:12Z
dc.date.issued2016
dc.description.abstractSelf-adaptive numerical methods provide a powerful and automatic approach in scientific computing. In particular, Adaptive Mesh Refinement (AMR) algorithms have been widely used in computational science and engineering and have become a necessary tool in computer simulations of complex natural and engineering problems. The key ingredient for success of self-adaptive numerical methods is a posteriori error estimates that are able to accurately locate sources of global and local error in the current approximation. The workshop creates a forum for junior and senior researchers in numerical analysis and computational science and engineering to discuss recent advances, initiates future research projects, and establishes new collaborations on convergence theory of adaptive numerical methods and on the construction and analysis of efficient, reliable, and robust a posteriori error estimators for computationally challenging problems.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13260
dc.identifier.urihttps://doi.org/10.34657/12290
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2016-42
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleSelf-Adaptive Numerical Methods for Computationally Challenging Problemseng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Self-Adaptive Numerical Methods for Computationally Challenging Problems, 04 Sep - 10 Sep 2016, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2016_42.pdf
Size:
3.07 MB
Format:
Adobe Portable Document Format
Description: