Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state

Loading...
Thumbnail Image
Date
2016
Volume
6
Issue
Journal
Scientific Reports
Series Titel
Book Title
Publisher
London : Nature Publishing Group
Link to publishers version
Abstract

Phase-change materials exhibit fast and reversible transitions between an amorphous and a crystalline state at high temperature. The two states display resistivity contrast, which is exploited in phase-change memory devices. The technologically most important family of phase-change materials consists of Ge-Sb-Te alloys. In this work, we investigate the structural, electronic and kinetic properties of liquid Ge2Sb2Te5 as a function of temperature by a combined experimental and computational approach. Understanding the properties of this phase is important to clarify the amorphization and crystallization processes. We show that the structural properties of the models obtained from ab initio and reverse Monte Carlo simulations are in good agreement with neutron and X-ray diffraction experiments. We extract the kinetic coefficients from the molecular dynamics trajectories and determine the activation energy for viscosity. The obtained value is shown to be fully compatible with our viscosity measurements.

Description
Keywords
Citation
Schumacher, M., Weber, H., Jóvári, P., Tsuchiya, Y., Youngs, T. G. A., Kaban, I., & Mazzarello, R. (2016). Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state (London : Nature Publishing Group). London : Nature Publishing Group. https://doi.org//10.1038/srep27434
License
CC BY 4.0 Unported