A central limit theorem for the effective conductance: I. Linear boundary data and small ellipticity contrasts
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 1739 | |
dc.contributor.author | Biskup, Marek | |
dc.contributor.author | Salvi, Michele | |
dc.contributor.author | Wolff, Tilman | |
dc.date.accessioned | 2016-03-24T17:37:26Z | |
dc.date.available | 2019-06-28T08:17:32Z | |
dc.date.issued | 2012 | |
dc.description.abstract | We consider resistor networks on Zd where each nearest-neighbor edge is assigned a non-negative random conductance. Given a finite set with a prescribed boundary condition, the effective conductance is the minimum of the Dirichlet energy over functions that agree with the boundary values. For shift-ergodic conductances, linear (Dirichlet) boundary conditions and square boxes, the effective conductance scaled by the volume of the box is known to converge to a deterministic limit as the box-size tends to infinity. Here we prove that, for i.i.d. conductances with a small ellipticity contrast, also a (non-degenerate) central limit theorem holds. The proof is based on the corrector method and the Martingale Central Limit Theorem; a key integrability condition is furnished by the Meyers estimate. More general domains, boundary conditions and arbitrary ellipticity contrasts are to be addressed in a subsequent paper. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 0946-8633 | |
dc.identifier.uri | https://doi.org/10.34657/1766 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3131 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | eng |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Random conductance model | eng |
dc.subject.other | second order discrete elliptic equations with random coefficients | eng |
dc.subject.other | homogenization theory | eng |
dc.title | A central limit theorem for the effective conductance: I. Linear boundary data and small ellipticity contrasts | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 731584139.pdf
- Size:
- 348.29 KB
- Format:
- Adobe Portable Document Format
- Description: