A central limit theorem for the effective conductance: I. Linear boundary data and small ellipticity contrasts

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1739
dc.contributor.authorBiskup, Marek
dc.contributor.authorSalvi, Michele
dc.contributor.authorWolff, Tilman
dc.date.accessioned2016-03-24T17:37:26Z
dc.date.available2019-06-28T08:17:32Z
dc.date.issued2012
dc.description.abstractWe consider resistor networks on Zd where each nearest-neighbor edge is assigned a non-negative random conductance. Given a finite set with a prescribed boundary condition, the effective conductance is the minimum of the Dirichlet energy over functions that agree with the boundary values. For shift-ergodic conductances, linear (Dirichlet) boundary conditions and square boxes, the effective conductance scaled by the volume of the box is known to converge to a deterministic limit as the box-size tends to infinity. Here we prove that, for i.i.d. conductances with a small ellipticity contrast, also a (non-degenerate) central limit theorem holds. The proof is based on the corrector method and the Martingale Central Limit Theorem; a key integrability condition is furnished by the Meyers estimate. More general domains, boundary conditions and arbitrary ellipticity contrasts are to be addressed in a subsequent paper.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/1766
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3131
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherRandom conductance modeleng
dc.subject.othersecond order discrete elliptic equations with random coefficientseng
dc.subject.otherhomogenization theoryeng
dc.titleA central limit theorem for the effective conductance: I. Linear boundary data and small ellipticity contrastseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
731584139.pdf
Size:
348.29 KB
Format:
Adobe Portable Document Format
Description: