Anisometric Microstructures to Determine Minimal Critical Physical Cues Required for Neurite Alignment

Loading...
Thumbnail Image
Date
2021
Volume
10
Issue
20
Journal
Series Titel
Book Title
Publisher
Weinheim : Wiley-VCH
Link to publishers version
Abstract

In nerve regeneration, scaffolds play an important role in providing an artificial extracellular matrix with architectural, mechanical, and biochemical cues to bridge the site of injury. Directed nerve growth is a crucial aspect of nerve repair, often introduced by engineered scaffolds imparting linear tracks. The influence of physical cues, determined by well-defined architectures, has been mainly studied for implantable scaffolds and is usually limited to continuous guiding features. In this report, the potential of short anisometric microelements in inducing aligned neurite extension, their dimensions, and the role of vertical and horizontal distances between them, is investigated. This provides crucial information to create efficient injectable 3D materials with discontinuous, in situ magnetically oriented microstructures, like the Anisogel. By designing and fabricating periodic, anisometric, discreet guidance cues in a high-throughput 2D in vitro platform using two-photon lithography techniques, the authors are able to decipher the minimal guidance cues required for directed nerve growth along the major axis of the microelements. These features determine whether axons grow unidirectionally or cross paths via the open spaces between the elements, which is vital for the design of injectable Anisogels for enhanced nerve repair. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH

Description
Keywords
anisometric microelements, micropatterned substrates, nerve regeneration, neurite alignment, two-photon lithography
Citation
Vedaraman, S., Perez-Tirado, A., Haraszti, T., Gerardo-Nava, J., Nishiguchi, A., & De Laporte, L. (2021). Anisometric Microstructures to Determine Minimal Critical Physical Cues Required for Neurite Alignment. 10(20). https://doi.org//10.1002/adhm.202100874
Collections
License
CC BY-NC-ND 4.0 Unported