Doping High-Mobility Donor : Acceptor Copolymer Semiconductors with an Organic Salt for High-Performance Thermoelectric Materials

dc.bibliographicCitation.firstPage1900945eng
dc.bibliographicCitation.issue3eng
dc.bibliographicCitation.lastPage98eng
dc.bibliographicCitation.volume6eng
dc.contributor.authorGuo, Jing
dc.contributor.authorLi, Guodong
dc.contributor.authorReith, Heiko
dc.contributor.authorJiang, Lang
dc.contributor.authorWang, Ming
dc.contributor.authorLi, Yuhao
dc.contributor.authorWang, Xinhao
dc.contributor.authorZeng, Zebing
dc.contributor.authorZhao, Huaizhou
dc.contributor.authorLu, Xinhui
dc.contributor.authorSchierning, Gabi
dc.contributor.authorNielsch, Kornelius
dc.contributor.authorLiao, Lei
dc.contributor.authorHu, Yuanyuan
dc.date.accessioned2021-08-23T07:24:46Z
dc.date.available2021-08-23T07:24:46Z
dc.date.issued2020
dc.description.abstractOrganic semiconductors (OSCs) are attractive for fabrication of thermoelectric devices with low cost, large area, low toxicity, and high flexibility. In order to achieve high-performance organic thermoelectric devices (OTEs), it is essential to develop OSCs with high conductivity (σ), large Seebeck coefficient (S), and low thermal conductivity (κ). It is equally important to explore efficient dopants matching the need of thermoelectric devices. The thermoelectric performance of a high-mobility donor–acceptor (D–A) polymer semiconductor, which is doped by an organic salt, is studied. Both a high p-type electrical conductivity approaching 4 S cm−1 and an excellent power factor (PF) of 7 µW K−2 m−1 are obtained, which are among the highest reported values for polymer semiconductors. Temperature-dependent conductivity, Seebeck coefficient and power factor of the doped materials are systematically investigated. Detailed analysis on the results of thermoelectric measurements has revealed a hopping transport in the materials, which verifies the empirical relationship: S ∝ σ−1/4 and PF ∝ σ1/2. The results demonstrate that D–A copolymer semiconductors with proper combination of dopants have great potential for fabricating high-performance thermoelectric devices. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimeng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6558
dc.identifier.urihttps://doi.org/10.34657/5605
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCH Verlag GmbH & Co. KGeng
dc.relation.doihttps://doi.org/10.1002/aelm.201900945
dc.relation.essn2199-160X
dc.relation.ispartofseriesAdvanced electronic materials 6 (2020), Nr. 3eng
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subjectthermoelectric (TE) devicesger
dc.subjectdopingeng
dc.subjectorganic saltseng
dc.subjectorganic semiconductorseng
dc.subject.ddc621.3eng
dc.titleDoping High-Mobility Donor : Acceptor Copolymer Semiconductors with an Organic Salt for High-Performance Thermoelectric Materialseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAdvanced electronic materialseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Doping High-Mobility Donor–Acceptor Copolymer....pdf
Size:
2.12 MB
Format:
Adobe Portable Document Format
Description: