Nanoscale magneto-structural coupling in as-deposited and freestanding single-crystalline Fe7Pd3 ferromagnetic shape memory alloy thin films

dc.bibliographicCitation.firstPage45003eng
dc.bibliographicCitation.issue4eng
dc.bibliographicCitation.journalTitleScience and Technology of Advanced Materialseng
dc.bibliographicCitation.lastPage3986eng
dc.bibliographicCitation.volume14eng
dc.contributor.authorLandgraf, A.
dc.contributor.authorJakob, A.M.
dc.contributor.authorMa, Y.
dc.contributor.authorMayr, S.G.
dc.date.accessioned2020-11-20T17:21:09Z
dc.date.available2020-11-20T17:21:09Z
dc.date.issued2013
dc.description.abstractFerromagnetic shape memory alloys are characterized by strong magneto-mechanical coupling occurring at the atomic scale causing large magnetically inducible strains at the macroscopic level. Employing combined atomic and magnetic force microscopy studies at variable temperature, we systematically explore the relation between the magnetic domain pattern and the underlying structure for as-deposited and freestanding single-crystalline Fe7Pd3 thin films across the martensite-austenite transition. We find experimental evidence that magnetic domain appearance is strongly affected by the presence and absence of nanotwinning. While the martensite-austenite transition upon temperature variation of as-deposited films is clearly reflected in topography by the presence and absence of a characteristic surface corrugation pattern, the magnetic domain pattern is hardly affected. These findings are discussed considering the impact of significant thermal stresses arising in the austenite phase. Freestanding martensitic films reveal a hierarchical structure of micro- and nanotwinning. The associated domain organization appears more complex, since the dominance of magnetic energy contributors alters within this length scale regime.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4591
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5962
dc.language.isoengeng
dc.publisherAbingdon : Taylor & Franciseng
dc.relation.doihttps://doi.org/10.1088/1468-6996/14/4/045003
dc.relation.issn1468-6996
dc.rights.licenseCC BY-NC-SA 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/eng
dc.subject.ddc620eng
dc.subject.otherferromagnetic shape memory alloyseng
dc.subject.othermagnetic force microscopyeng
dc.subject.otherCharacteristic surfaceseng
dc.subject.otherExperimental evidenceeng
dc.subject.otherFerromagnetic shape memory alloyeng
dc.subject.otherHierarchical structureseng
dc.subject.otherMagnetic domain patternseng
dc.subject.otherMagnetomechanical couplingseng
dc.subject.otherTemperature variationeng
dc.subject.otherVariable temperatureeng
dc.subject.otherAusteniteeng
dc.subject.otherCrystalline materialseng
dc.subject.otherIron compoundseng
dc.subject.otherMagnetic domainseng
dc.subject.otherMagnetic force microscopyeng
dc.subject.otherMagnetoseng
dc.subject.otherMartensiteeng
dc.subject.otherSingle crystalseng
dc.subject.otherSurface topographyeng
dc.subject.otherThin filmseng
dc.subject.otherTopographyeng
dc.subject.otherPalladiumeng
dc.titleNanoscale magneto-structural coupling in as-deposited and freestanding single-crystalline Fe7Pd3 ferromagnetic shape memory alloy thin filmseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIOMeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Landgraf2013.pdf
Size:
2.73 MB
Format:
Adobe Portable Document Format
Description: