Embedding large-scale graph and text-based datasets with LLMs
| dc.bibliographicCitation.seriesTitle | ZIB Report 2025,11 | |
| dc.contributor.author | Kunt, Tim | |
| dc.contributor.author | Buchholz, Annika | |
| dc.contributor.author | Khebouri, Imene | |
| dc.contributor.author | Koch, Thorsten | |
| dc.contributor.author | Litzel, Ida | |
| dc.contributor.author | Vu, Thi Huong | |
| dc.date.accessioned | 2025-10-08T08:08:42Z | |
| dc.date.available | 2025-10-08T08:08:42Z | |
| dc.date.issued | 2025-07 | |
| dc.description.abstract | Large text data sets, such as publications, websites, and other text-based media, inherit two distinct types of features: (1) the text itself, its information conveyed through semantics, and (2) its relationship to other texts through links, references, or shared attributes. While the latter can be described as a graph structure, enabling us to utilize tools and methods from graph theory, as well as conventional classification methods, the former has recently gained new potential through the use of LLM embedding models. Demonstrating these possibilities and their practicability, we investigate the Web of Science dataset, containing 56 million scientific publications through the lens of our proposed embedding method, revealing a self-structured landscape of texts. Furthermore, we discuss strategies for combining these emerging methods with traditional graph-based approaches, potentially compensating for each other’s shortcomings. Datei-Upload durch TIB | ger |
| dc.description.version | publishedVersion | |
| dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/24223 | |
| dc.identifier.uri | https://doi.org/10.34657/23240 | |
| dc.language.iso | eng | |
| dc.publisher | Hannover : Technische Informationsbibliothek | |
| dc.relation.affiliation | Zuse Institute Berlin | |
| dc.rights.license | Es gilt deutsches Urheberrecht. Das Werk bzw. der Inhalt darf zum eigenen Gebrauch kostenfrei heruntergeladen, konsumiert, gespeichert oder ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. - German copyright law applies. The work or content may be downloaded, consumed, stored or printed for your own use but it may not be distributed via the internet or passed on to external parties. | |
| dc.subject.ddc | 000 | Informatik, Information und Wissen, allgemeine Werke | |
| dc.title | Embedding large-scale graph and text-based datasets with LLMs | ger |
| dc.type | Report | |
| dc.type | Text | |
| dcterms.extent | 9 Seiten | |
| dtf.funding.funder | BMFTR | |
| dtf.funding.program | 16WIK2101A | |
| tib.accessRights | openAccess |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- RO9118_2025_11.pdf
- Size:
- 918.82 KB
- Format:
- Adobe Portable Document Format
- Description:
