Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus

dc.bibliographicCitation.firstPage2319eng
dc.bibliographicCitation.issue12eng
dc.bibliographicCitation.journalTitleRemote sensingeng
dc.bibliographicCitation.volume13eng
dc.contributor.authorFountoulakis, Ilias
dc.contributor.authorKosmopoulos, Panagiotis
dc.contributor.authorPapachristopoulou, Kyriakoula
dc.contributor.authorRaptis, Ioannis-Panagiotis
dc.contributor.authorMamouri, Rodanthi-Elisavet
dc.contributor.authorNisantzi, Argyro
dc.contributor.authorGkikas, Antonis
dc.contributor.authorWitthuhn, Jonas
dc.contributor.authorBley, Sebastian
dc.contributor.authorMoustaka, Anna
dc.contributor.authorBuehl, Johannes
dc.contributor.authorSeifert, Patric
dc.contributor.authorHadjimitsis, Diofantos G.
dc.contributor.authorKontoes, Charalampos
dc.contributor.authorKazadzis, Stelios
dc.date.accessioned2022-04-14T06:03:21Z
dc.date.available2022-04-14T06:03:21Z
dc.date.issued2021
dc.description.abstractCyprus plans to drastically increase the share of renewable energy sources from 13.9% in 2020 to 22.9% in 2030. Solar energy can play a key role in the effort to fulfil this goal. The potential for production of solar energy over the island is much higher than most of European territory because of the low latitude of the island and the nearly cloudless summers. In this study, high quality and fine resolution satellite retrievals of aerosols and dust, from the newly developed MIDAS climatology, and information for clouds from CM SAF are used in order to quantify the effects of aerosols, dust, and clouds on the levels of surface solar radiation for 2004–2017 and the corresponding financial loss for different types of installations for the production of solar energy. Surface solar radiation climatology has also been developed based on the above information. Ground-based measurements were also incorporated to study the contribution of different species to the aerosol mixture and the effects of day-to-day variability of aerosols on SSR. Aerosols attenuate 5–10% of the annual global horizontal irradiation and 15–35% of the annual direct normal irradiation, while clouds attenuate 25–30% and 35–50% respectively. Dust is responsible for 30–50% of the overall attenuation by aerosols and is the main regulator of the variability of total aerosol. All-sky annual global horizontal irradiation increased significantly in the period of study by 2%, which was mainly attributed to changes in cloudiness.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8685
dc.identifier.urihttps://doi.org/10.34657/7723
dc.language.isoengeng
dc.publisherBasel : MDPIeng
dc.relation.doihttps://doi.org/10.3390/rs13122319
dc.relation.essn2072-4292
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc620eng
dc.subject.otherAerosoleng
dc.subject.otherCloudseng
dc.subject.otherCypruseng
dc.subject.otherDusteng
dc.subject.otherSolar energyeng
dc.titleEffects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cypruseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorTROPOSeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Effects_of_aerosols_and_clouds_on_the_levels.pdf
Size:
5.9 MB
Format:
Adobe Portable Document Format
Description: