Finite element method to fluid-solid interaction problems with unbounded periodic interfaces
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Consider a time-harmonic acoustic plane wave incident onto a doubly periodic (biperiodic) surface from above. The medium above the surface is supposed to be filled with a homogeneous compressible inviscid fluid of constant mass density, whereas the region below is occupied by an isotropic and linearly elastic solid body characterized by its Lamé constants. This paper is concerned with a variational approach to the fluid-solid interaction problems with unbounded biperiodic Lipschitz interfaces between the domains of the acoustic and elastic waves. The existence of quasi-periodic solutions in Sobolev spaces is established at arbitrary frequency of incidence, while uniqueness is proved only for small frequencies or for all frequencies excluding a discrete set. A finite element scheme coupled with Dirichlet-to-Neumann mappings is proposed. The Dirichlet-to-Neumann mappings are approximated by truncated Rayleigh series expansions, and, finally, numerical tests in 2D are performed.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.