On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation

dc.bibliographicCitation.firstPage11223eng
dc.bibliographicCitation.issue22eng
dc.bibliographicCitation.lastPage11242eng
dc.bibliographicCitation.volume10
dc.contributor.authorPaasonen, P.
dc.contributor.authorNieminen, T.
dc.contributor.authorAsmi, E.
dc.contributor.authorManninen, H.E.
dc.contributor.authorPetäjä, T.
dc.contributor.authorPlass-Dülmer, C.
dc.contributor.authorFlentje, H.
dc.contributor.authorBirmili, W.
dc.contributor.authorWiedensohler, A.
dc.contributor.authorHõrrak, U.
dc.contributor.authorMetzger, A.
dc.contributor.authorHamed, A.
dc.contributor.authorLaaksonen, A.
dc.contributor.authorFacchini, M.C.
dc.contributor.authorKerminen, V.-M.
dc.contributor.authorKulmala, M.
dc.date.accessioned2017-11-03T18:26:21Z
dc.date.available2019-06-26T17:17:02Z
dc.date.issued2010
dc.description.abstractSulphuric acid and organic vapours have been identified as the key components in the ubiquitous secondary new particle formation in the atmosphere. In order to assess their relative contribution and spatial variability, we analysed altogether 36 new particle formation events observed at four European measurement sites during EUCAARI campaigns in 2007–2009. We tested models of several different nucleation mechanisms coupling the formation rate of neutral particles (J) with the concentration of sulphuric acid ([H2SO4]) or low-volatility organic vapours ([org]) condensing on sub-4 nm particles, or with a combination of both concentrations. Furthermore, we determined the related nucleation coefficients connecting the neutral nucleation rate J with the vapour concentrations in each mechanism. The main goal of the study was to identify the mechanism of new particle formation and subsequent growth that minimizes the difference between the modelled and measured nucleation rates. At three out of four measurement sites – Hyytiälä (Finland), Melpitz (Germany) and San Pietro Capofiume (Italy) – the nucleation rate was closely connected to squared sulphuric acid concentration, whereas in Hohenpeissenberg (Germany) the low-volatility organic vapours were observed to be dominant. However, the nucleation rate at the sulphuric acid dominant sites could not be described with sulphuric acid concentration and a single value of the nucleation coefficient, as K in J=K [H2SO4]2, but the median coefficients for different sites varied over an order of magnitude. This inter-site variation was substantially smaller when the heteromolecular homogenous nucleation between H2SO4 and organic vapours was assumed to take place in addition to homogenous nucleation of H2SO4 alone, i.e., J=KSA1[H2SO4]2+KSA2[H2SO4][org]. By adding in this equation a term describing homomolecular organic vapour nucleation, Ks3[org]2, equally good results were achieved. In general, our results suggest that organic vapours do play a role, not only in the condensational growth of the particles, but also in the nucleation process, with a site-specific degree.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/1162
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/258
dc.language.isoengeng
dc.publisherMünchen : European Geopyhsical Unioneng
dc.relation.doihttps://doi.org/10.5194/acp-10-11223-2010
dc.relation.ispartofseriesAtmospheric Chemistry and Physics, Volume 10, Issue 22, Page 11223-11242eng
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subject.ddc550eng
dc.titleOn the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formationeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAtmospheric Chemistry and Physicseng
tib.accessRightsopenAccesseng
wgl.contributorTROPOSeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acp-10-11223-2010.pdf
Size:
2.13 MB
Format:
Adobe Portable Document Format
Description: