Improved imaging of magnetically labeled cells using rotational magnetomotive optical coherence tomography

dc.bibliographicCitation.firstPage444eng
dc.bibliographicCitation.issue5eng
dc.bibliographicCitation.journalTitleApplied Sciences (Switzerland)eng
dc.bibliographicCitation.lastPage341eng
dc.bibliographicCitation.volume7eng
dc.contributor.authorCimalla, P.
dc.contributor.authorWalther, J.
dc.contributor.authorMueller, C.
dc.contributor.authorAlmedawar, S.
dc.contributor.authorRellinghaus, B.
dc.contributor.authorWittig, D.
dc.contributor.authorAder, M.
dc.contributor.authorKarl, M.O.
dc.contributor.authorFunk, R.H.W.
dc.contributor.authorBrand, M.
dc.contributor.authorKoch, E.
dc.date.accessioned2020-07-20T06:05:22Z
dc.date.available2020-07-20T06:05:22Z
dc.date.issued2017
dc.description.abstractIn this paper, we present a reliable and robust method for magnetomotive optical coherence tomography (MM-OCT) imaging of single cells labeled with iron oxide particles. This method employs modulated longitudinal and transverse magnetic fields to evoke alignment and rotation of anisotropic magnetic structures in the sample volume. Experimental evidence suggests that magnetic particles assemble themselves in elongated chains when exposed to a permanent magnetic field. Magnetomotion in the intracellular space was detected and visualized by means of 3D OCT as well as laser speckle reflectometry as a 2D reference imaging method. Our experiments on mesenchymal stem cells embedded in agar scaffolds show that the magnetomotive signal in rotational MM-OCT is significantly increased by a factor of ˜3 compared to previous pulsed MM-OCT, although the solenoid's power consumption was 16 times lower. Finally, we use our novel method to image ARPE-19 cells, a human retinal pigment epithelium cell line. Our results permit magnetomotive imaging with higher sensitivity and the use of low power magnetic fields or larger working distances for future three-dimensional cell tracking in target tissues and organs.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3686
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5057
dc.language.isoengeng
dc.publisherBasel : MDPI AGeng
dc.relation.doihttps://doi.org/10.3390/app7050444
dc.relation.issn2076-3417
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc610eng
dc.subject.otherCell imagingeng
dc.subject.otherDynamic contrast agentseng
dc.subject.otherFluorescence microscopyeng
dc.subject.otherLaser speckleeng
dc.subject.otherMagnetic particleseng
dc.subject.otherOptical coherence tomographyeng
dc.titleImproved imaging of magnetically labeled cells using rotational magnetomotive optical coherence tomographyeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectMedizin, Gesundheiteng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cimalla et al 2017, Improved Imaging of Magnetically Labeled Cells.pdf
Size:
3.58 MB
Format:
Adobe Portable Document Format
Description:
Collections