Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials

dc.bibliographicCitation.firstPage20633eng
dc.bibliographicCitation.journalTitleScientific Reportseng
dc.bibliographicCitation.lastPage2488eng
dc.bibliographicCitation.volume6eng
dc.contributor.authorMitrofanov, Kirill V.
dc.contributor.authorFons, Paul
dc.contributor.authorMakino, Kotaro
dc.contributor.authorTerashima, Ryo
dc.contributor.authorShimada, Toru
dc.contributor.authorKolobov, Alexander, V.
dc.contributor.authorTominaga, Junji
dc.contributor.authorBragaglia, Valeria
dc.contributor.authorGiussani, Alessandro
dc.contributor.authorCalarco, Raffaella
dc.contributor.authorRiechert, Henning
dc.contributor.authorSato, Takahiro
dc.contributor.authorKatayama, Tetsuo
dc.contributor.authorOgawa, Kanade
dc.contributor.authorTogashi, Tadashi
dc.contributor.authorYabashi, Makina
dc.contributor.authorWall, Simon
dc.contributor.authorBrewe, Dale
dc.contributor.authorHase, Muneaki
dc.date.accessioned2020-01-07T06:43:12Z
dc.date.available2020-01-07T06:43:12Z
dc.date.issued2016
dc.description.abstractPhase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge2Sb2Te5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structure experiment confirms the existence of an intermediate state with disordered bonds. This newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit and improved energy efficiency and reliability of phase-change memory technologies.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/97
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4826
dc.language.isoengeng
dc.publisherLondon : Nature Publishingeng
dc.relation.doihttps://doi.org/10.1038/srep20633
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc620eng
dc.subject.othercondensed mattereng
dc.subject.otherphase transitionseng
dc.subject.otherthin filmseng
dc.titleSub-nanometre resolution of atomic motion during electronic excitation in phase-change materialseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPDIeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
srep20633.pdf
Size:
2.62 MB
Format:
Adobe Portable Document Format
Description: