Pressure-driven collapse of the relativistic electronic ground state in a honeycomb

dc.bibliographicCitation.firstPage35eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.lastPage208eng
dc.bibliographicCitation.volume3eng
dc.contributor.authorClancy, J.P.
dc.contributor.authorGretarsson, H.
dc.contributor.authorSears, J.A.
dc.contributor.authorSingh, Y.
dc.contributor.authorDesgreniers, S.
dc.contributor.authorMehlawat, K.
dc.contributor.authorLayek, S.
dc.contributor.authorRozenberg, G.K.
dc.contributor.authorDing, Y.
dc.contributor.authorUpton, M.H.
dc.contributor.authorCasa, D.
dc.contributor.authorChen, N.
dc.contributor.authorIm, J.
dc.contributor.authorLee, Y.
dc.contributor.authorYadav, R.
dc.contributor.authorHozoi, L.
dc.contributor.authorEfremov, D.
dc.contributor.authorVan Den Brink, J.
dc.contributor.authorKim, Y.-J.
dc.date.accessioned2020-07-20T06:05:19Z
dc.date.available2020-07-20T06:05:19Z
dc.date.issued2018
dc.description.abstractHoneycomb-lattice quantum magnets with strong spin-orbit coupling are promising candidates for realizing a Kitaev quantum spin liquid. Although iridate materials such as Li2IrO3 and Na2IrO3 have been extensively investigated in this context, there is still considerable debate as to whether a localized relativistic wavefunction (J eff = 1/2) provides a suitable description for the electronic ground state of these materials. To address this question, we have studied the evolution of the structural and electronic properties of α-Li2IrO3 as a function of applied hydrostatic pressure using a combination of X-ray diffraction and X-ray spectroscopy techniques. We observe striking changes even under the application of only small hydrostatic pressure (P ≤ 0.1 GPa): A distortion of the Ir honeycomb lattice (via X-ray diffraction), a dramatic decrease in the strength of spin-orbit coupling effects (via X-ray absorption spectroscopy), and a significant increase in non-cubic crystal electric field splitting (via resonant inelastic X-ray scattering). Our data indicate that α-Li2IrO3 is best described by a J eff = 1/2 state at ambient pressure, but demonstrate that this state is extremely fragile and collapses under the influence of applied pressure.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3672
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5043
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/s41535-018-0109-0
dc.relation.ispartofseriesnpj Quantum Materials 3 (2018), Nr. 1eng
dc.relation.issn2397-4648
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectKitaev quantum spin liquideng
dc.subjectHoneycomb-lattice quantum magnetseng
dc.subjectspin-orbit couplingeng
dc.subject.ddc530eng
dc.titlePressure-driven collapse of the relativistic electronic ground state in a honeycombeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitlenpj Quantum Materialseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Clancy et al 2018, Pressure-driven collapse of the relativistic electronic.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:
Collections