Steering carbon dioxide reduction toward C–C coupling using copper electrodes modified with porous molecular films

dc.bibliographicCitation.firstPage844
dc.bibliographicCitation.issue1
dc.bibliographicCitation.volume14
dc.contributor.authorZhao, Siqi
dc.contributor.authorChristensen, Oliver
dc.contributor.authorSun, Zhaozong
dc.contributor.authorLiang, Hongqing
dc.contributor.authorBagger, Alexander
dc.contributor.authorTorbensen, Kristian
dc.contributor.authorNazari, Pegah
dc.contributor.authorLauritsen, Jeppe Vang
dc.contributor.authorPedersen, Steen Uttrup
dc.contributor.authorRossmeisl, Jan
dc.contributor.authorDaasbjerg, Kim
dc.date.accessioned2023-06-02T15:00:35Z
dc.date.available2023-06-02T15:00:35Z
dc.date.issued2023
dc.description.abstractCopper offers unique capability as catalyst for multicarbon compounds production in the electrochemical carbon dioxide reduction reaction. In lieu of conventional catalysis alloying with other elements, copper can be modified with organic molecules to regulate product distribution. Here, we systematically study to which extent the carbon dioxide reduction is affected by film thickness and porosity. On a polycrystalline copper electrode, immobilization of porous bipyridine-based films of varying thicknesses is shown to result in almost an order of magnitude enhancement of the intrinsic current density pertaining to ethylene formation while multicarbon products selectivity increases from 9.7 to 61.9%. In contrast, the total current density remains mostly unaffected by the modification once it is normalized with respect to the electrochemical active surface area. Supported by a microkinetic model, we propose that porous and thick films increase both local carbon monoxide partial pressure and the carbon monoxide surface coverage by retaining in situ generated carbon monoxide. This reroutes the reaction pathway toward multicarbon products by enhancing carbon–carbon coupling. Our study highlights the significance of customizing the molecular film structure to improve the selectivity of copper catalysts for carbon dioxide reduction reaction.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/12280
dc.identifier.urihttp://dx.doi.org/10.34657/11312
dc.language.isoeng
dc.publisher[London] : Nature Publishing Group UK
dc.relation.doihttps://doi.org/10.1038/s41467-023-36530-z
dc.relation.essn2041-1723
dc.relation.ispartofseriesNature Communications 14 (2023), Nr. 1eng
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectcarbon dioxideeng
dc.subjectcarbon monoxideeng
dc.subjectcatalysiseng
dc.subjectcatalysteng
dc.subjectcoppereng
dc.subjectelectrochemical methodeng
dc.subjectelectrodeeng
dc.subjectethyleneeng
dc.subjectimmobilizationeng
dc.subjectmolecular analysiseng
dc.subjectpartial pressureeng
dc.subject.ddc500
dc.subject.ddc540
dc.titleSteering carbon dioxide reduction toward C–C coupling using copper electrodes modified with porous molecular filmseng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleNature Communications
tib.accessRightsopenAccess
wgl.contributorLIKAT
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
11Steering-carbon-dioxide.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Description:
Collections