Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics

dc.bibliographicCitation.firstPage3058eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.journalTitleNature Communicationseng
dc.bibliographicCitation.lastPage778eng
dc.bibliographicCitation.volume9eng
dc.contributor.authorYuan, X.
dc.contributor.authorWeyhausen-Brinkmann, F.
dc.contributor.authorMartín-Sánchez, J.
dc.contributor.authorPiredda, G.
dc.contributor.authorKřápek, V.
dc.contributor.authorHuo, Y.
dc.contributor.authorHuang, H.
dc.contributor.authorSchimpf, C.
dc.contributor.authorSchmidt, O.G.
dc.contributor.authorEdlinger, J.
dc.contributor.authorBester, G.
dc.contributor.authorTrotta, R.
dc.contributor.authorRastelli, A.
dc.date.accessioned2020-07-20T06:05:18Z
dc.date.available2020-07-20T06:05:18Z
dc.date.issued2018
dc.description.abstractThe optical selection rules in epitaxial quantum dots are strongly influenced by the orientation of their natural quantization axis, which is usually parallel to the growth direction. This configuration is well suited for vertically emitting devices, but not for planar photonic circuits because of the poorly controlled orientation of the transition dipoles in the growth plane. Here we show that the quantization axis of gallium arsenide dots can be flipped into the growth plane via moderate in-plane uniaxial stress. By using piezoelectric strain-actuators featuring strain amplification, we study the evolution of the selection rules and excitonic fine structure in a regime, in which quantum confinement can be regarded as a perturbation compared to strain in determining the symmetry-properties of the system. The experimental and computational results suggest that uniaxial stress may be the right tool to obtain quantum-light sources with ideally oriented transition dipoles and enhanced oscillator strengths for integrated quantum photonics.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3662
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5033
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/s41467-018-05499-5
dc.relation.issn2041-1723
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.othergallium arsenideeng
dc.subject.otherquantum doteng
dc.subject.otherelectronic equipmenteng
dc.subject.otherequipmenteng
dc.subject.otherexperimental studyeng
dc.subject.otherfluctuating asymmetryeng
dc.subject.othergalliumeng
dc.subject.otheroptical propertyeng
dc.subject.otheroscillationeng
dc.subject.otherperturbationeng
dc.subject.otherpreferred orientationeng
dc.subject.otherquantitative analysiseng
dc.subject.otherArticleeng
dc.subject.othercomparative studyeng
dc.subject.othercompressioneng
dc.subject.otherdipoleeng
dc.subject.otherelectric fieldeng
dc.subject.otherelectroneng
dc.subject.otherevolutioneng
dc.subject.otherlighteng
dc.subject.othermechanical stresseng
dc.subject.otherphotoneng
dc.subject.otherpolarizationeng
dc.subject.otherquantum mechanicseng
dc.titleUniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonicseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yuan et al 2018, Uniaxial stress flips the natural quantization.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Description:
Collections