Large deviations for the local times of a random walk among random conductances

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1605
dc.contributor.authorKönig, Wolfgang
dc.contributor.authorSalvi, Michele
dc.contributor.authorWolff, Tilman
dc.date.accessioned2016-03-24T17:38:40Z
dc.date.available2019-06-28T08:06:02Z
dc.date.issued2011
dc.description.abstractWe derive an annealed large deviation principle for the normalised local times of a continuous-time random walk among random conductances in a finite domain in $Z^d$ in the spirit of Donsker-Varadhan citeDV75. We work in the interesting case that the conductances may assume arbitrarily small values. Thus, the underlying picture of the principle is a joint strategy of small values of the conductances and large holding times of the walk. The speed and the rate function of our principle are explicit in terms of the lower tails of the conductance distribution. As an application, we identify the logarithmic asymptotics of the lower tails of the principal eigenvalue of the randomly perturbed negative Laplace operator in the domain.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/2589
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2368
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherContinuous-time random walkeng
dc.subject.otherrandom conductanceseng
dc.subject.otherrandomly perturbed Laplace operatoreng
dc.subject.otherlarge deviationseng
dc.subject.otherDonsker–Varadhan rate functioneng
dc.titleLarge deviations for the local times of a random walk among random conductanceseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
679695699.pdf
Size:
191.86 KB
Format:
Adobe Portable Document Format
Description: