Critical Galton-Watson processes: The maximum of total progenies within a large window
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 1091 | |
dc.contributor.author | Fleischmann, Klaus | |
dc.contributor.author | Valutin, Vladimir A. | |
dc.contributor.author | Wachtel, Vitali | |
dc.date.accessioned | 2016-12-16T22:47:10Z | |
dc.date.available | 2019-06-28T08:20:29Z | |
dc.date.issued | 2006 | |
dc.description.abstract | Consider a critical Galton-Watson process Z=Z_n: n=0,1,... of index 1+alpha, alpha in (0,1]. Let S_k(j) denote the sum of the Z_n with n in the window [k,...,k+j), and M_m(j) the maximum of the S_k with k moving in [0,m-j]. We describe the asymptotic behavior of the expectation EM_m(j) if the window width j=j_m satisfies that j/m converges in [0,1] as m tends to infinity. This will be achieved via establishing the asymptotic behavior of the tail probabilities of M_infinity(j). | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 0946-8633 | |
dc.identifier.uri | https://doi.org/10.34657/2189 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3253 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | eng |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Branching of index on plus alpha | eng |
dc.subject.other | limit theorem | eng |
dc.subject.other | conditional invariance principle | eng |
dc.subject.other | tail asymptotics | eng |
dc.subject.other | moving window | eng |
dc.subject.other | maximal total progeny | eng |
dc.subject.other | lower deviation probabilities | eng |
dc.title | Critical Galton-Watson processes: The maximum of total progenies within a large window | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 517898160.pdf
- Size:
- 344.43 KB
- Format:
- Adobe Portable Document Format
- Description: