Critical Galton-Watson processes: The maximum of total progenies within a large window

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1091
dc.contributor.authorFleischmann, Klaus
dc.contributor.authorValutin, Vladimir A.
dc.contributor.authorWachtel, Vitali
dc.date.accessioned2016-12-16T22:47:10Z
dc.date.available2019-06-28T08:20:29Z
dc.date.issued2006
dc.description.abstractConsider a critical Galton-Watson process Z=Z_n: n=0,1,... of index 1+alpha, alpha in (0,1]. Let S_k(j) denote the sum of the Z_n with n in the window [k,...,k+j), and M_m(j) the maximum of the S_k with k moving in [0,m-j]. We describe the asymptotic behavior of the expectation EM_m(j) if the window width j=j_m satisfies that j/m converges in [0,1] as m tends to infinity. This will be achieved via establishing the asymptotic behavior of the tail probabilities of M_infinity(j).eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/2189
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3253
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherBranching of index on plus alphaeng
dc.subject.otherlimit theoremeng
dc.subject.otherconditional invariance principleeng
dc.subject.othertail asymptoticseng
dc.subject.othermoving windoweng
dc.subject.othermaximal total progenyeng
dc.subject.otherlower deviation probabilitieseng
dc.titleCritical Galton-Watson processes: The maximum of total progenies within a large windoweng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
517898160.pdf
Size:
344.43 KB
Format:
Adobe Portable Document Format
Description: