Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation

dc.bibliographicCitation.firstPageeaar5164
dc.bibliographicCitation.issue7
dc.bibliographicCitation.volume4
dc.contributor.authorMaehrlein, Sebastian F.
dc.contributor.authorRadu, Ilie
dc.contributor.authorMaldonado, Pablo
dc.contributor.authorPaarmann, Alexander
dc.contributor.authorGensch, Michael
dc.contributor.authorKalashnikova, Alexandra M.
dc.contributor.authorPisarev, Roman V.
dc.contributor.authorWolf, Martin
dc.contributor.authorOppeneer, Peter M.
dc.contributor.authorBarker, Joseph
dc.contributor.authorKampfrath, Tobias
dc.date.accessioned2023-06-05T08:24:23Z
dc.date.available2023-06-05T08:24:23Z
dc.date.issued2018
dc.description.abstractTo gain control over magnetic order on ultrafast time scales, a fundamental understanding of the way electron spins interact with the surrounding crystal lattice is required. However, measurement and analysis even of basic collective processes such as spin-phonon equilibration have remained challenging. Here, we directly probe the flow of energy and angular momentum in the model insulating ferrimagnet yttrium iron garnet. After ultrafast resonant lattice excitation, we observe that magnetic order reduces on distinct time scales of 1 ps and 100 ns. Temperature-dependent measurements, a spin-coupling analysis, and simulations show that the two dynamics directly reflect two stages of spin-lattice equilibration. On the 1-ps scale, spins and phonons reach quasi-equilibrium in terms of energy through phonon-induced modulation of the exchange interaction. This mechanism leads to identical demagnetization of the ferrimagnet’s two spin sublattices and to a previously inaccessible ferrimagnetic state of increased temperature yet unchanged total magnetization. Finally, on the much slower, 100-ns scale, the excess of spin angular momentum is released to the crystal lattice, resulting in full equilibrium. Our findings are relevant for all insulating ferrimagnets and indicate that spin manipulation by phonons, including the spin Seebeck effect, can be extended to antiferromagnets and into the terahertz frequency range.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/12392
dc.identifier.urihttp://dx.doi.org/10.34657/11424
dc.language.isoeng
dc.publisherWashington, DC [u.a.] : Assoc.
dc.relation.doihttps://doi.org/10.1126/sciadv.aar5164
dc.relation.essn2375-2548
dc.relation.ispartofseriesScience Advances 4 (2018), Nr. 7eng
dc.rights.licenseCC BY-NC 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0
dc.subjectAngular momentumeng
dc.subjectCrystal latticeseng
dc.subjectDemagnetizationeng
dc.subjectFerrimagnetismeng
dc.subjectGarnetseng
dc.subjectPhononseng
dc.subjectSpin dynamicseng
dc.subjectYttrium iron garneteng
dc.subject.ddc500
dc.titleDissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitationeng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleScience Advances
tib.accessRightsopenAccess
wgl.contributorMBI
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sciadv-aar5164.pdf
Size:
11.79 MB
Format:
Adobe Portable Document Format
Description:
Collections