Stabilization mechanism of molecular orbital crystals in IrTe2

dc.bibliographicCitation.firstPage325
dc.bibliographicCitation.journalTitleCommunications Physicseng
dc.bibliographicCitation.volume5
dc.contributor.authorRitschel, Tobias
dc.contributor.authorStahl, Quirin
dc.contributor.authorKusch, Maximilian
dc.contributor.authorTrinckauf, Jan
dc.contributor.authorGarbarino, Gaston
dc.contributor.authorSvitlyk, Volodymyr
dc.contributor.authorMezouar, Mohamed
dc.contributor.authorYang, Junjie
dc.contributor.authorCheong, Sang-Wook
dc.contributor.authorGeck, Jochen
dc.date.accessioned2023-01-30T06:09:53Z
dc.date.available2023-01-30T06:09:53Z
dc.date.issued2022
dc.description.abstractDoped IrTe2 is considered a platform for topological superconductivity and therefore receives currently a lot of interest. In addition, the superconductivity in these materials exists in close vicinity to electronic order and the formation of molecular orbital crystals, which we explore here by means of high-pressure single crystal x-ray diffraction in combination with density functional theory. Our crystallographic refinements provide detailed information about the structural evolution as a function of applied pressure up to 42 GPa. Using this structural information for density functional theory calculations, we show that the local multicenter bonding in IrTe2 is driven by changes in the Ir-Te-Ir bond angle. When the electronic order sets in, this bond angle decreases drastically, leading to a stabilization of a multicenter molecular orbital bond. This unusual local mechanism of bond formation in an itinerant material provides a natural explanation for the different electronic orders in IrTe2. It further illustrates the strong coupling of the electrons with the lattice and is most likely relevant for the superconductivity in this material.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11155
dc.identifier.urihttp://dx.doi.org/10.34657/10181
dc.language.isoeng
dc.publisherLondon : Springer Nature
dc.relation.doihttps://doi.org/10.1038/s42005-022-01094-9
dc.relation.essn2399-3650
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc530
dc.subject.otherApplied pressureeng
dc.subject.otherBond angleeng
dc.subject.otherDensity-functional theory calculationseng
dc.subject.otherDensity-functional-theoryeng
dc.subject.otherElectronic orderingeng
dc.subject.otherHigh pressureeng
dc.subject.otherSingle crystal x-ray diffractioneng
dc.subject.otherStabilization mechanismseng
dc.subject.otherStructural evolutioneng
dc.subject.otherStructural informationeng
dc.titleStabilization mechanism of molecular orbital crystals in IrTe2eng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIFWD
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Stabilization_mechanism.pdf
Size:
4.18 MB
Format:
Adobe Portable Document Format
Description:
Collections