Obstacle mean-field game problem

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2136
dc.contributor.authorGomes, Diogo A.
dc.contributor.authorPatrizi, Stefania
dc.date.accessioned2016-12-13T10:46:46Z
dc.date.available2019-06-28T08:24:59Z
dc.date.issued2015
dc.description.abstractIn this paper, we introduce and study a first-order mean-field game obstacle problem. We examine the case of local dependence on the measure under assumptions that include both the logarithmic case and power-like nonlinearities. Since the obstacle operator is not differentiable, the equations for first-order mean field game problems have to be discussed carefully. Hence, we begin by considering a penalized problem. We prove this problem admits a unique solution satisfying uniform bounds. These bounds serve to pass to the limit in the penalized problem and to characterize the limiting equations. Finally, we prove uniqueness of solutions.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/2793
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3428
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherMean-field gameseng
dc.subject.otherObstacle problemeng
dc.subject.otherPenalization methodeng
dc.titleObstacle mean-field game problemeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
868739928.pdf
Size:
219.24 KB
Format:
Adobe Portable Document Format
Description: