Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions

dc.bibliographicCitation.firstPage15501eng
dc.bibliographicCitation.journalTitleNature Communicationseng
dc.bibliographicCitation.lastPage2185eng
dc.bibliographicCitation.volume8eng
dc.contributor.authorKeil, R.
dc.contributor.authorZopf, M.
dc.contributor.authorChen, Y.
dc.contributor.authorHöfer, B.
dc.contributor.authorZhang, J.
dc.contributor.authorDing, F.
dc.contributor.authorSchmidt, O.G.
dc.date.accessioned2020-07-20T06:05:22Z
dc.date.available2020-07-20T06:05:22Z
dc.date.issued2017
dc.description.abstractSemiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization-entangled photon pairs. Despite remarkable progress in the past 20 years, many challenges still remain for this material, such as the extremely low yield, the low degree of entanglement and the large wavelength distribution. Here, we show that with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement and ultra-narrow wavelength distribution at rubidium transitions. Therefore, this material system is an attractive candidate for the realization of a solid-state quantum repeater - among many other key enabling quantum photonic elements.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3692
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5063
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/ncomms15501
dc.relation.issn2041-1723
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherquantum doteng
dc.subject.otherrubidiumeng
dc.subject.otherdropleteng
dc.subject.otheretchingeng
dc.subject.otherphoton flux densityeng
dc.subject.otherquantum mechanicseng
dc.subject.otherrubidiumeng
dc.subject.othersemiconductor industryeng
dc.subject.otherwavelengtheng
dc.subject.otherArticleeng
dc.subject.othercontrolled studyeng
dc.subject.otherdissolutioneng
dc.subject.otherexcitationeng
dc.subject.otherluminescenceeng
dc.subject.otheroscillationeng
dc.subject.otherparticle sizeeng
dc.subject.otherphotoneng
dc.subject.otherpolarizationeng
dc.subject.otherquantum mechanicseng
dc.subject.othersemiconductoreng
dc.subject.othersolid stateeng
dc.subject.othervaporeng
dc.titleSolid-state ensemble of highly entangled photon sources at rubidium atomic transitionseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Keil et al 2017, Solid-state ensemble of highly entangled.pdf
Size:
472.7 KB
Format:
Adobe Portable Document Format
Description:
Collections