Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions

dc.bibliographicCitation.firstPage15501eng
dc.bibliographicCitation.lastPage2185eng
dc.bibliographicCitation.volume8eng
dc.contributor.authorKeil, R.
dc.contributor.authorZopf, M.
dc.contributor.authorChen, Y.
dc.contributor.authorHöfer, B.
dc.contributor.authorZhang, J.
dc.contributor.authorDing, F.
dc.contributor.authorSchmidt, O.G.
dc.date.accessioned2020-07-20T06:05:22Z
dc.date.available2020-07-20T06:05:22Z
dc.date.issued2017
dc.description.abstractSemiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization-entangled photon pairs. Despite remarkable progress in the past 20 years, many challenges still remain for this material, such as the extremely low yield, the low degree of entanglement and the large wavelength distribution. Here, we show that with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement and ultra-narrow wavelength distribution at rubidium transitions. Therefore, this material system is an attractive candidate for the realization of a solid-state quantum repeater - among many other key enabling quantum photonic elements.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3692
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5063
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/ncomms15501
dc.relation.ispartofseriesNature Communications 8 (2017)eng
dc.relation.issn2041-1723
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectquantum doteng
dc.subjectrubidiumeng
dc.subjectdropleteng
dc.subjectetchingeng
dc.subjectphoton flux densityeng
dc.subjectquantum mechanicseng
dc.subjectrubidiumeng
dc.subjectsemiconductor industryeng
dc.subjectwavelengtheng
dc.subjectArticleeng
dc.subjectcontrolled studyeng
dc.subjectdissolutioneng
dc.subjectexcitationeng
dc.subjectluminescenceeng
dc.subjectoscillationeng
dc.subjectparticle sizeeng
dc.subjectphotoneng
dc.subjectpolarizationeng
dc.subjectquantum mechanicseng
dc.subjectsemiconductoreng
dc.subjectsolid stateeng
dc.subjectvaporeng
dc.subject.ddc530eng
dc.titleSolid-state ensemble of highly entangled photon sources at rubidium atomic transitionseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleNature Communicationseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Keil et al 2017, Solid-state ensemble of highly entangled.pdf
Size:
472.7 KB
Format:
Adobe Portable Document Format
Description:
Collections