In Situ Transmission Electron Microscopy of Disorder–Order Transition in Epitaxially Stabilized FeGe2

dc.bibliographicCitation.firstPage2779eng
dc.bibliographicCitation.issue4eng
dc.bibliographicCitation.journalTitleThe journal of physical chemistry : C, Nanomaterials and interfaceseng
dc.bibliographicCitation.lastPage2784eng
dc.bibliographicCitation.volume125eng
dc.contributor.authorTerker, Markus
dc.contributor.authorNicolai, Lars
dc.contributor.authorGaucher, Samuel
dc.contributor.authorHerfort, Jens
dc.contributor.authorTrampert, Achim
dc.date.accessioned2022-03-23T06:28:00Z
dc.date.available2022-03-23T06:28:00Z
dc.date.issued2021
dc.description.abstractIsothermal crystallization of amorphous Ge deposited on a cubic Fe3Si/GaAs(001) substrate is performed by in situ annealing within a transmission electron microscope. It was found that the formation of epitaxially aligned tetragonal FeGe2 is associated with a disorder–order phase transition mainly consisting of a rearrangement of the Fe/vacancy sublattice from a random distribution to alternating filled and empty layers. Additionally, atomically resolved high-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy demonstrated that the vertical lattice spacing of the Ge sublattice reduces across vacancy layers, indicating that strain minimization plays a role in the phase transition process. Crystallization and ordering are both found to proceed layer-by-layer and with square-root-shaped kinetics with a smaller transition rate for the latter.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8327
dc.identifier.urihttps://doi.org/10.34657/7365
dc.language.isoengeng
dc.publisherWashington, DC : Soc.eng
dc.relation.doihttps://doi.org/10.1021/acs.jpcc.0c10716
dc.relation.essn1932-7455
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc540eng
dc.subject.ddc530eng
dc.subject.otherEnergy dispersive spectroscopyeng
dc.subject.otherGermaniumeng
dc.subject.otherGermanium compoundseng
dc.subject.otherHigh resolution transmission electron microscopyeng
dc.subject.otherIn situ processingeng
dc.subject.otherIron compoundseng
dc.subject.otherIsothermal annealingeng
dc.subject.otherScanning electron microscopyeng
dc.subject.otherTransmissionseng
dc.subject.otherDisorder-order phase transitionseng
dc.subject.otherDisorder-order transitionseng
dc.subject.otherEnergy dispersive X ray spectroscopyeng
dc.subject.otherEpitaxially stabilizedeng
dc.subject.otherHigh-angle annular dark fieldseng
dc.subject.otherIn-situ transmission electron microscopieseng
dc.subject.otherIsothermal crystallizationeng
dc.subject.otherRandom distributioneng
dc.subject.otherGermanium metallographyeng
dc.titleIn Situ Transmission Electron Microscopy of Disorder–Order Transition in Epitaxially Stabilized FeGe2eng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPDIeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
In_Situ_Transmission_Electron_Microscopy.pdf
Size:
3.39 MB
Format:
Adobe Portable Document Format
Description:
Collections